matmod/model.py
Brandon Rozek cf636eb7fd
Updates
- Fixed VSP check
- Parse magic output files disregarding header row
- TODO: Fix parsing multiple implication tables in a row
2024-05-09 17:08:15 -04:00

260 lines
8.5 KiB
Python

"""
Defining what it means to be a model
"""
from common import set_to_str
from logic import (
PropositionalVariable, get_propostional_variables, Logic, Term,
Operation, Conjunction, Disjunction, Implication
)
from typing import Set, Dict, Tuple, Optional
from functools import lru_cache
from itertools import combinations, chain, product
from copy import deepcopy
__all__ = ['ModelValue', 'ModelFunction', 'Model']
class ModelValue:
def __init__(self, name):
self.name = name
self.hashed_value = hash(self.name)
def immutable(self, name, value):
raise Exception("Model values are immutable")
self.__setattr__ = immutable
def __str__(self):
return self.name
def __hash__(self):
return self.hashed_value
def __eq__(self, other):
return isinstance(other, ModelValue) and self.name == other.name
def __lt__(self, other):
assert isinstance(other, ModelValue)
return ModelOrderConstraint(self, other)
class ModelFunction:
def __init__(self, arity: int, mapping, operation_name = ""):
self.operation_name = operation_name
self.arity = arity
# Correct input to always be a tuple
corrected_mapping = dict()
for k, v in mapping.items():
if isinstance(k, tuple):
assert len(k) == arity
corrected_mapping[k] = v
elif isinstance(k, list):
assert len(k) == arity
corrected_mapping[tuple(k)] = v
else: # Assume it's atomic
assert arity == 1
corrected_mapping[(k,)] = v
self.mapping = corrected_mapping
def __str__(self):
str_dict = dict()
for k, v in self.mapping.items():
inputstr = "(" + ", ".join(str(ki) for ki in k) + ")"
str_dict[inputstr] = str(v)
return self.operation_name + " " + str(str_dict)
def __call__(self, *args):
return self.mapping[args]
# def __eq__(self, other):
# return isinstance(other, ModelFunction) and self.name == other.name and self.arity == other.arity
class ModelOrderConstraint:
# a < b
def __init__(self, a: ModelValue, b: ModelValue):
self.a = a
self.b = b
def __hash__(self):
return hash(self.a) * hash(self.b)
def __eq__(self, other):
return isinstance(other, ModelOrderConstraint) and \
self.a == other.a and self.b == other.b
class Model:
def __init__(
self,
carrier_set: Set[ModelValue],
logical_operations: Set[ModelFunction],
designated_values: Set[ModelValue],
ordering: Optional[Set[ModelOrderConstraint]] = None
):
assert designated_values <= carrier_set
self.carrier_set = carrier_set
self.logical_operations = logical_operations
self.designated_values = designated_values
self.ordering = ordering if ordering is not None else set()
# TODO: Make sure ordering is "valid"
# That is: transitive, etc.
def __str__(self):
result = f"""Carrier Set: {set_to_str(self.carrier_set)}
Designated Values: {set_to_str(self.designated_values)}
"""
for function in self.logical_operations:
result += f"{str(function)}\n"
return result
def evaluate_term(t: Term, f: Dict[PropositionalVariable, ModelValue], interpretation: Dict[Operation, ModelFunction]) -> ModelValue:
if isinstance(t, PropositionalVariable):
return f[t]
model_function = interpretation[t.operation]
model_arguments = []
for logic_arg in t.arguments:
model_arg = evaluate_term(logic_arg, f, interpretation)
model_arguments.append(model_arg)
return model_function(*model_arguments)
def all_model_valuations(
pvars: Tuple[PropositionalVariable],
mvalues: Tuple[ModelValue]):
all_possible_values = product(mvalues, repeat=len(pvars))
for valuation in all_possible_values:
mapping: Dict[PropositionalVariable, ModelValue] = dict()
assert len(pvars) == len(valuation)
for pvar, value in zip(pvars, valuation):
mapping[pvar] = value
yield mapping
@lru_cache
def all_model_valuations_cached(
pvars: Tuple[PropositionalVariable],
mvalues: Tuple[ModelValue]):
return list(all_model_valuations(pvars, mvalues))
def rule_ordering_satisfied(model: Model, interpretation: Dict[Operation, ModelFunction]) -> bool:
"""
Currently testing whether this function helps with runtime...
"""
if Conjunction in interpretation:
possible_inputs = ((a, b) for (a, b) in product(model.carrier_set, model.carrier_set))
for a, b in possible_inputs:
output = interpretation[Conjunction](a, b)
if a < b in model.ordering and output != a:
print("RETURNING FALSE")
return False
if b < a in model.ordering and output != b:
print("RETURNING FALSE")
return False
if Disjunction in interpretation:
possible_inputs = ((a, b) for (a, b) in product(model.carrier_set, model.carrier_set))
for a, b in possible_inputs:
output = interpretation[Disjunction](a, b)
if a < b in model.ordering and output != b:
print("RETURNING FALSE")
return False
if b < a in model.ordering and output != a:
print("RETURNING FALSE")
return False
return True
def satisfiable(logic: Logic, model: Model, interpretation: Dict[Operation, ModelFunction]) -> bool:
pvars = tuple(get_propostional_variables(tuple(logic.rules)))
mappings = all_model_valuations_cached(pvars, tuple(model.carrier_set))
# NOTE: Does not look like rule ordering is helping for finding
# models of R...
if not rule_ordering_satisfied(model, interpretation):
return False
for mapping in mappings:
for rule in logic.rules:
premise_met = True
premise_ts = set()
for premise in rule.premises:
premise_t = evaluate_term(premise, mapping, interpretation)
if premise_t not in model.designated_values:
premise_met = False
break
premise_ts.add(premise_t)
if not premise_met:
continue
consequent_t = evaluate_term(rule.conclusion, mapping, interpretation)
if consequent_t not in model.designated_values:
return False
return True
def model_closure(initial_set: Set[ModelValue], mfunctions: Set[ModelFunction]):
last_set: Set[ModelValue] = set()
current_set: Set[ModelValue] = initial_set
while last_set != current_set:
last_set = deepcopy(current_set)
for mfun in mfunctions:
# Get output for every possible input configuration
# from last_set
for args in product(last_set, repeat=mfun.arity):
current_set.add(mfun(*args))
return current_set
def has_vsp(model: Model, interpretation: Dict[Operation, ModelFunction]) -> bool:
"""
Tells you whether a model violates the
variable sharing property.
"""
impfunction = interpretation[Implication]
# Compute I the set of tuples (x, y) where
# x -> y does not take a designiated value
I: Set[Tuple[ModelValue, ModelValue]] = set()
for (x, y) in product(model.carrier_set, model.carrier_set):
if impfunction(x, y) not in model.designated_values:
I.add((x, y))
# Construct the powerset without the empty set
s = list(I)
I_power = chain.from_iterable(combinations(s, r) for r in range(1, len(s) + 1))
# ((x1, y1)), ((x1, y1), (x2, y2)), ...
for xys in I_power:
# Compute the closure of all operations
# with just the xs
xs = {xy[0] for xy in xys}
carrier_set_left: Set[ModelValue] = model_closure(xs, model.logical_operations)
# Compute the closure of all operations
# with just the ys
ys = {xy[1] for xy in xys}
carrier_set_right: Set[ModelValue] = model_closure(ys, model.logical_operations)
# If the carrier set intersects, then we violate VSP
if len(carrier_set_left & carrier_set_right) > 0:
continue
invalid = False
for (x2, y2) in product(carrier_set_left, carrier_set_right):
if impfunction(x2, y2) in model.designated_values:
invalid = True
break
if not invalid:
return True
return False