matmod/logic.py
2024-04-08 23:59:21 -04:00

128 lines
No EOL
3.7 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from typing import Any, Set
from functools import lru_cache
class Operation:
def __init__(self, symbol: str, arity: int):
self.symbol = symbol
self.arity = arity
self.hashed_value = hash(self.symbol) + self.arity
def immutable(self, name, value):
raise Exception("Operations are immutable")
self.__setattr__ = immutable
def __hash__(self):
return self.hashed_value
def __call__(self, *args):
# Ensure the arity is met
assert len(args) == self.arity
# Ensure every argument is a term
for t in args:
assert isinstance(t, Term)
return OpTerm(self, args)
class Term:
def __init__(self):
pass
def __lt__(self, y):
return Inequation(self, y)
class PropositionalVariable(Term):
def __init__(self, name):
self.name = name
self.hashed_value = hash(self.name)
def immutable(self, name, value):
raise Exception("Propositional variables are immutable")
self.__setattr__ = immutable
def __hash__(self):
return self.hashed_value
# def __setattr__(self, name: str, value: Any):
# raise Exception("Propositional variables are immutable")
def __str__(self):
return self.name
# def PropTerm(Term):
# def __init__(self, v: PropositionalVariable):
# self.v = v
class OpTerm(Term):
def __init__(self, operation: Operation, arguments):
assert len(arguments) == operation.arity
self.operation = operation
self.arguments = arguments
self.hashed_value = hash(self.operation) * hash(self.arguments)
def immutable(self, name, value):
raise Exception("Terms are immutable")
self.__setattr__ = immutable
def __hash__(self):
return self.hashed_value
def __str__(self):
arg_strs = [str(a) for a in self.arguments]
return self.operation.symbol + "(" + ",".join(arg_strs) + ")"
Negation = Operation("¬", 1)
Conjunction = Operation("", 2)
Disjunction = Operation("", 2)
Implication = Operation("", 2)
class Inequation:
def __init__(self, antecedant : Term, consequent: Term):
self.antecedant = antecedant
self.consequent = consequent
def __str__(self):
return str(self.antecedant) + "" + str(self.consequent)
class InequalityRule:
def __init__(self, premises : Set[Inequation], conclusion: Inequation):
self.premises = premises
self.conclusion = conclusion
def __str__(self):
str_premises = [str(p) for p in self.premises]
str_premises2 = "{" + ",".join(str_premises) + "}"
return str(str_premises2) + "=>" + str(self.conclusion)
class Rule:
def __init__(self, premises : Set[Term], conclusion: Term):
self.premises = premises
self.conclusion = conclusion
def __str__(self):
str_premises = [str(p) for p in self.premises]
str_premises2 = "{" + ",".join(str_premises) + "}"
return str(str_premises2) + "=>" + str(self.conclusion)
class Logic:
def __init__(self, operations: Set[Operation], rules: Set[Rule]):
self.operations = operations
self.rules = rules
def get_prop_var_from_term(t: Term):
if isinstance(t, PropositionalVariable):
return {t,}
result = set()
for arg in t.arguments:
result |= get_prop_var_from_term(arg)
return result
def get_propostional_variables(rules):
vars = set()
for rule in rules:
# Get all vars in premises
for premise in rule.premises:
vars |= get_prop_var_from_term(premise)
# Get vars in conclusion
vars |= get_prop_var_from_term(rule.conclusion)
return vars