mirror of
https://github.com/Brandon-Rozek/matmod.git
synced 2024-11-26 22:23:58 -05:00
281 lines
10 KiB
Python
281 lines
10 KiB
Python
"""
|
|
Matrix model semantics and satisfiability of
|
|
a given logic.
|
|
"""
|
|
from common import set_to_str
|
|
from logic import (
|
|
get_propostional_variables, Logic,
|
|
Operation, PropositionalVariable, Term
|
|
)
|
|
from collections import defaultdict
|
|
from functools import cached_property, lru_cache, reduce
|
|
from itertools import chain, combinations_with_replacement, permutations, product
|
|
from typing import Dict, List, Optional, Set, Tuple
|
|
|
|
|
|
__all__ = ['ModelValue', 'ModelFunction', 'Model', 'Interpretation']
|
|
|
|
|
|
class ModelValue:
|
|
def __init__(self, name):
|
|
self.name = name
|
|
self.hashed_value = hash(self.name)
|
|
def immutable(self, name, value):
|
|
raise Exception("Model values are immutable")
|
|
self.__setattr__ = immutable
|
|
def __str__(self):
|
|
return self.name
|
|
def __hash__(self):
|
|
return self.hashed_value
|
|
def __eq__(self, other):
|
|
return isinstance(other, ModelValue) and self.name == other.name
|
|
def __deepcopy__(self, _):
|
|
return ModelValue(self.name)
|
|
|
|
class ModelFunction:
|
|
def __init__(self, arity: int, mapping, operation_name = ""):
|
|
self.operation_name = operation_name
|
|
self.arity = arity
|
|
|
|
# Transform the mapping such that the
|
|
# key is always a tuple of model values
|
|
corrected_mapping: Dict[Tuple[ModelValue], ModelValue] = {}
|
|
for k, v in mapping.items():
|
|
if isinstance(k, tuple):
|
|
assert len(k) == arity
|
|
corrected_mapping[k] = v
|
|
elif isinstance(k, list):
|
|
assert len(k) == arity
|
|
corrected_mapping[tuple(k)] = v
|
|
else: # Assume it's atomic
|
|
assert arity == 1
|
|
corrected_mapping[(k,)] = v
|
|
|
|
self.mapping = corrected_mapping
|
|
|
|
@cached_property
|
|
def domain(self):
|
|
result_set: Set[ModelValue] = set()
|
|
for args in self.mapping.keys():
|
|
for v in args:
|
|
result_set.add(v)
|
|
return result_set
|
|
|
|
def __str__(self):
|
|
if self.arity == 1:
|
|
return unary_function_str(self)
|
|
elif self.arity == 2:
|
|
return binary_function_str(self)
|
|
|
|
# Default return dictionary representation
|
|
str_dict = dict()
|
|
for k, v in self.mapping.items():
|
|
inputstr = "(" + ", ".join(str(ki) for ki in k) + ")"
|
|
str_dict[inputstr] = str(v)
|
|
return self.operation_name + " " + str(str_dict)
|
|
|
|
def __call__(self, *args):
|
|
return self.mapping[args]
|
|
|
|
|
|
def unary_function_str(f: ModelFunction) -> str:
|
|
assert isinstance(f, ModelFunction) and f.arity == 1
|
|
sorted_domain = sorted(f.domain, key=lambda v : v.name)
|
|
header_line = f" {f.operation_name} | " + " ".join((str(v) for v in sorted_domain))
|
|
sep_line = "-" + ("-" * len(f.operation_name)) + "-+-" +\
|
|
("-" * len(sorted_domain)) +\
|
|
("-" * reduce(lambda sum, v : sum + len(v.name), sorted_domain, 0))
|
|
data_line = (" " * (len(f.operation_name) + 2)) + "| " + " ".join((str(f.mapping[(v,)]) for v in sorted_domain))
|
|
return "\n".join((header_line, sep_line, data_line)) + "\n"
|
|
|
|
def binary_function_str(f: ModelFunction) -> str:
|
|
assert isinstance(f, ModelFunction) and f.arity == 2
|
|
sorted_domain = sorted(f.domain, key=lambda v : v.name)
|
|
max_col_width = max(chain((len(v.name) for v in sorted_domain), (len(f.operation_name),)))
|
|
header_line = f" {f.operation_name} " +\
|
|
(" " * (max_col_width - len(f.operation_name))) + "| " +\
|
|
" ".join((str(v) for v in sorted_domain))
|
|
sep_line = "-" + ("-" * max_col_width) + "-+-" +\
|
|
("-" * len(sorted_domain)) +\
|
|
("-" * reduce(lambda sum, v : sum + len(v.name), sorted_domain, 0))
|
|
data_lines = ""
|
|
for row_v in sorted_domain:
|
|
data_line = f" {row_v.name} | " + " ".join((str(f.mapping[(row_v, col_v)]) for col_v in sorted_domain))
|
|
data_lines += data_line + "\n"
|
|
return "\n".join((header_line, sep_line, data_lines))
|
|
|
|
Interpretation = Dict[Operation, ModelFunction]
|
|
|
|
class Model:
|
|
def __init__(
|
|
self,
|
|
carrier_set: Set[ModelValue],
|
|
logical_operations: Set[ModelFunction],
|
|
designated_values: Set[ModelValue],
|
|
name: Optional[str] = None
|
|
):
|
|
assert designated_values <= carrier_set
|
|
self.carrier_set = carrier_set
|
|
self.logical_operations = logical_operations
|
|
self.designated_values = designated_values
|
|
self.name = str(abs(hash((
|
|
frozenset(carrier_set),
|
|
frozenset(logical_operations),
|
|
frozenset(designated_values)
|
|
))))[:5] if name is None else name
|
|
|
|
def __str__(self):
|
|
result = ("=" * 25) + f"""
|
|
Model Name: {self.name}
|
|
Carrier Set: {set_to_str(self.carrier_set)}
|
|
Designated Values: {set_to_str(self.designated_values)}
|
|
"""
|
|
for function in self.logical_operations:
|
|
result += f"{str(function)}\n"
|
|
|
|
return result + ("=" * 25) + "\n"
|
|
|
|
|
|
def evaluate_term(
|
|
t: Term, f: Dict[PropositionalVariable, ModelValue],
|
|
interpretation: Dict[Operation, ModelFunction]) -> ModelValue:
|
|
"""
|
|
Given a term in a logic, mapping
|
|
between terms and model values,
|
|
as well as an interpretation
|
|
of operations to model functions,
|
|
return the evaluated model value.
|
|
"""
|
|
|
|
if isinstance(t, PropositionalVariable):
|
|
return f[t]
|
|
|
|
model_function = interpretation[t.operation]
|
|
model_arguments: List[ModelValue] = []
|
|
for logic_arg in t.arguments:
|
|
model_arg = evaluate_term(logic_arg, f, interpretation)
|
|
model_arguments.append(model_arg)
|
|
|
|
return model_function(*model_arguments)
|
|
|
|
def all_model_valuations(
|
|
pvars: Tuple[PropositionalVariable],
|
|
mvalues: Tuple[ModelValue]):
|
|
"""
|
|
Given propositional variables and model values,
|
|
produce every possible mapping between the two.
|
|
"""
|
|
|
|
all_possible_values = product(mvalues, repeat=len(pvars))
|
|
|
|
for valuation in all_possible_values:
|
|
mapping: Dict[PropositionalVariable, ModelValue] = {}
|
|
assert len(pvars) == len(valuation)
|
|
for pvar, value in zip(pvars, valuation):
|
|
mapping[pvar] = value
|
|
yield mapping
|
|
|
|
@lru_cache
|
|
def all_model_valuations_cached(
|
|
pvars: Tuple[PropositionalVariable],
|
|
mvalues: Tuple[ModelValue]):
|
|
return list(all_model_valuations(pvars, mvalues))
|
|
|
|
|
|
def satisfiable(logic: Logic, model: Model, interpretation: Dict[Operation, ModelFunction]) -> bool:
|
|
"""
|
|
Determine whether a model satisfies a logic
|
|
given an interpretation.
|
|
"""
|
|
pvars = tuple(get_propostional_variables(tuple(logic.rules)))
|
|
mappings = all_model_valuations_cached(pvars, tuple(model.carrier_set))
|
|
|
|
for mapping in mappings:
|
|
# Make sure that the model satisfies each of the rules
|
|
for rule in logic.rules:
|
|
# The check only applies if the premises are designated
|
|
premise_met = True
|
|
premise_ts: Set[ModelValue] = set()
|
|
|
|
for premise in rule.premises:
|
|
premise_t = evaluate_term(premise, mapping, interpretation)
|
|
# As soon as one premise is not designated,
|
|
# move to the next rule.
|
|
if premise_t not in model.designated_values:
|
|
premise_met = False
|
|
break
|
|
# If designated, keep track of the evaluated term
|
|
premise_ts.add(premise_t)
|
|
|
|
if not premise_met:
|
|
continue
|
|
|
|
# With the premises designated, make sure the consequent is designated
|
|
consequent_t = evaluate_term(rule.conclusion, mapping, interpretation)
|
|
if consequent_t not in model.designated_values:
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
|
|
def model_closure(initial_set: Set[ModelValue], mfunctions: Set[ModelFunction]):
|
|
"""
|
|
Given an initial set of model values and a set of model functions,
|
|
compute the complete set of model values that are closed
|
|
under the operations.
|
|
"""
|
|
closure_set: Set[ModelValue] = initial_set
|
|
last_new: Set[ModelValue] = initial_set
|
|
changed: bool = True
|
|
|
|
while changed:
|
|
changed = False
|
|
new_elements: Set[ModelValue] = set()
|
|
old_closure: Set[ModelValue] = closure_set - last_new
|
|
|
|
# arity -> args
|
|
cached_args = defaultdict(list)
|
|
|
|
# Pass elements into each model function
|
|
for mfun in mfunctions:
|
|
|
|
# If a previous function shared the same arity,
|
|
# we'll use the same set of computed arguments
|
|
# to pass into the model functions.
|
|
if mfun.arity in cached_args:
|
|
for args in cached_args[mfun.arity]:
|
|
# Compute the new elements
|
|
# given the cached arguments.
|
|
element = mfun(*args)
|
|
if element not in closure_set:
|
|
new_elements.add(element)
|
|
|
|
# We don't need to compute the arguments
|
|
# thanks to the cache, so move onto the
|
|
# next function.
|
|
continue
|
|
|
|
# At this point, we don't have cached arguments, so we need
|
|
# to compute this set.
|
|
|
|
# Each argument must have at least one new element to not repeat
|
|
# work. We'll range over the number of new model values within our
|
|
# argument.
|
|
for num_new in range(1, mfun.arity + 1):
|
|
new_args = combinations_with_replacement(last_new, r=num_new)
|
|
old_args = combinations_with_replacement(old_closure, r=mfun.arity - num_new)
|
|
# Determine every possible ordering of the concatenated
|
|
# new and old model values.
|
|
for new_arg, old_arg in product(new_args, old_args):
|
|
for args in permutations(new_arg + old_arg):
|
|
cached_args[mfun.arity].append(args)
|
|
element = mfun(*args)
|
|
if element not in closure_set:
|
|
new_elements.add(element)
|
|
|
|
closure_set.update(new_elements)
|
|
changed = len(new_elements) > 0
|
|
last_new = new_elements
|
|
|
|
return closure_set
|