mirror of
https://github.com/Brandon-Rozek/matmod.git
synced 2025-01-06 20:53:05 +00:00
158 lines
5.8 KiB
Python
158 lines
5.8 KiB
Python
"""
|
|
Generate all the models for a given logic
|
|
with a specified number of elements.
|
|
"""
|
|
from common import set_to_str
|
|
from logic import Logic, Operation, Rule, get_operations_from_term
|
|
from model import (
|
|
Interpretation, ModelValue, Model,
|
|
ModelFunction, satisfiable
|
|
)
|
|
from itertools import combinations, chain, product
|
|
from typing import Set, List, Tuple
|
|
|
|
def possible_designations(iterable):
|
|
"""Powerset without the empty and complete set"""
|
|
s = list(iterable)
|
|
return chain.from_iterable(combinations(s, r) for r in range(1, len(s)))
|
|
|
|
def possible_functions(operation, carrier_set):
|
|
"""
|
|
Create every possible input, output pair
|
|
for a given model function based on an
|
|
operation and a carrier set.
|
|
"""
|
|
arity = operation.arity
|
|
|
|
inputs = list(product(carrier_set, repeat=arity))
|
|
possible_outputs = product(carrier_set, repeat=len(inputs))
|
|
for outputs in possible_outputs:
|
|
assert len(inputs) == len(outputs)
|
|
new_function = dict()
|
|
for input, output in zip(inputs, outputs):
|
|
new_function[input] = output
|
|
|
|
yield ModelFunction(arity, new_function, operation.symbol)
|
|
|
|
|
|
def only_rules_with(rules: Set[Rule], operation: Operation) -> List[Rule]:
|
|
"""
|
|
Filter the list of rules in a logic to those
|
|
that only contain the logical operation specified.
|
|
"""
|
|
result_rules: List[Rule] = []
|
|
for rule in rules:
|
|
is_valid = True
|
|
# Go through every term in the premises and conclusion
|
|
for t in (rule.premises | {rule.conclusion,}):
|
|
t_operations = get_operations_from_term(t)
|
|
# Make sure there's only one operation
|
|
# and that it matches the operation specified
|
|
if len(t_operations) > 1:
|
|
is_valid = False
|
|
break
|
|
if len(t_operations) == 0:
|
|
continue
|
|
t_operation = next(iter(t_operations))
|
|
if t_operation != operation:
|
|
is_valid = False
|
|
break
|
|
if is_valid:
|
|
result_rules.append(rule)
|
|
return result_rules
|
|
|
|
|
|
def possible_interpretations(
|
|
logic: Logic, carrier_set: Set[ModelValue],
|
|
designated_values: Set[ModelValue]):
|
|
"""
|
|
Consider every possible interpretation of operations
|
|
within the specified logic given the carrier set of
|
|
model values, and the set of designated values.
|
|
"""
|
|
operations: List[Operation] = []
|
|
model_functions: List[List[ModelFunction]] = []
|
|
|
|
for operation in logic.operations:
|
|
operations.append(operation)
|
|
candidate_functions = list(possible_functions(operation, carrier_set))
|
|
passed_functions: List[ModelFunction] = []
|
|
"""
|
|
Discard candidate functions that don't pass
|
|
the rules that only contain the given
|
|
logical operation.
|
|
"""
|
|
restricted_rules = only_rules_with(logic.rules, operation)
|
|
if len(restricted_rules) > 0:
|
|
small_logic = Logic({operation,}, restricted_rules)
|
|
# Add candidate functions whose small model
|
|
# and logic are satisfied given the restricted
|
|
# rule set.
|
|
for f in candidate_functions:
|
|
small_model = Model(carrier_set, {f,}, designated_values)
|
|
interp = {operation: f}
|
|
if satisfiable(small_logic, small_model, interp):
|
|
passed_functions.append(f)
|
|
else:
|
|
passed_functions = candidate_functions
|
|
if len(passed_functions) == 0:
|
|
raise Exception("No interpretation satisfies the axioms for the operation " + str(operation))
|
|
else:
|
|
print(
|
|
f"Operation {operation.symbol} has {len(passed_functions)} candidate functions"
|
|
)
|
|
model_functions.append(passed_functions)
|
|
|
|
# The model_functions variables contains
|
|
# the candidate functions for each operation.
|
|
|
|
functions_choice = product(*model_functions)
|
|
# Assign a function to each operation
|
|
for functions in functions_choice:
|
|
assert len(operations) == len(functions)
|
|
interpretation: Interpretation = dict()
|
|
for operation, function in zip(operations, functions):
|
|
interpretation[operation] = function
|
|
yield interpretation
|
|
|
|
def generate_model(
|
|
logic: Logic, number_elements: int, num_solutions: int = -1,
|
|
print_model=False) -> List[Tuple[Model, Interpretation]]:
|
|
"""
|
|
Generate the specified number of models that
|
|
satisfy a logic of a certain size.
|
|
"""
|
|
assert number_elements > 0
|
|
carrier_set = {
|
|
ModelValue("a" + str(i)) for i in range(number_elements)
|
|
}
|
|
|
|
possible_designated_values = possible_designations(carrier_set)
|
|
|
|
solutions: List[Tuple[Model, Interpretation]] = []
|
|
|
|
for designated_values in possible_designated_values:
|
|
designated_values = set(designated_values)
|
|
print("Considering models for designated values", set_to_str(designated_values))
|
|
|
|
possible_interps = possible_interpretations(logic, carrier_set, designated_values)
|
|
for interpretation in possible_interps:
|
|
is_valid = True
|
|
model = Model(carrier_set, set(interpretation.values()), designated_values)
|
|
# Iteratively test possible interpretations
|
|
# by adding one axiom at a time
|
|
for rule in logic.rules:
|
|
small_logic = Logic(logic.operations, {rule,})
|
|
if not satisfiable(small_logic, model, interpretation):
|
|
is_valid = False
|
|
break
|
|
|
|
if is_valid:
|
|
solutions.append((model, interpretation))
|
|
if print_model:
|
|
print(model, flush=True)
|
|
|
|
if num_solutions >= 0 and len(solutions) >= num_solutions:
|
|
return solutions
|
|
|
|
return solutions
|