""" Defining what it means to be a model """ from common import set_to_str from logic import ( PropositionalVariable, get_propostional_variables, Logic, Term, Operation ) from typing import Set, List, Dict, Tuple from itertools import product from functools import lru_cache __all__ = ['ModelValue', 'ModelFunction', 'Model'] class ModelValue: def __init__(self, name): self.name = name self.hashed_value = hash(self.name) def immutable(self, name, value): raise Exception("Model values are immutable") self.__setattr__ = immutable def __str__(self): return self.name def __hash__(self): return self.hashed_value def __eq__(self, other): return isinstance(other, ModelValue) and self.name == other.name class ModelFunction: def __init__(self, mapping, operation_name = ""): self.operation_name = operation_name # Correct input to always be a tuple corrected_mapping = dict() for k, v in mapping.items(): if isinstance(k, tuple): corrected_mapping[k] = v elif isinstance(k, list): corrected_mapping[tuple(k)] = v else: # Assume it's atomic corrected_mapping[(k,)] = v self.mapping = corrected_mapping def __str__(self): str_dict = dict() for k, v in self.mapping.items(): inputstr = "(" + ", ".join(str(ki) for ki in k) + ")" str_dict[inputstr] = str(v) return str(str_dict) def __call__(self, *args): return self.mapping[args] # def __eq__(self, other): # return isinstance(other, ModelFunction) and self.name == other.name and self.arity == other.arity class Model: def __init__( self, carrier_set: Set[ModelValue], logical_operations: Set[ModelFunction], designated_values: Set[ModelValue] ): assert designated_values <= carrier_set self.carrier_set = carrier_set self.logical_operations = logical_operations self.designated_values = designated_values def __str__(self): result = f"""Carrier Set: {set_to_str(self.carrier_set)} Designated Values: {set_to_str(self.designated_values)} """ for function in self.logical_operations: result += f"{str(function)}\n" return result def evaluate_term(t: Term, f: Dict[PropositionalVariable, ModelValue], interpretation: Dict[Operation, ModelFunction]) -> ModelValue: if isinstance(t, PropositionalVariable): return f[t] model_function = interpretation[t.operation] model_arguments = [] for logic_arg in t.arguments: model_arg = evaluate_term(logic_arg, f, interpretation) model_arguments.append(model_arg) return model_function(*model_arguments) def all_model_valuations( pvars: Tuple[PropositionalVariable], mvalues: Tuple[ModelValue]): possible_valuations = [mvalues for _ in pvars] all_possible_values = product(*possible_valuations) for valuation in all_possible_values: mapping: Dict[PropositionalVariable, ModelValue] = dict() assert len(pvars) == len(valuation) for pvar, value in zip(pvars, valuation): mapping[pvar] = value yield mapping @lru_cache def all_model_valuations_cached( pvars: Tuple[PropositionalVariable], mvalues: Tuple[ModelValue]): return list(all_model_valuations(pvars, mvalues)) def satisfiable(logic: Logic, model: Model, interpretation: Dict[Operation, ModelFunction]) -> bool: pvars = tuple(get_propostional_variables(tuple(logic.rules))) mappings = all_model_valuations_cached(pvars, tuple(model.carrier_set)) for mapping in mappings: for rule in logic.rules: premise_met = True for premise in rule.premises: t = evaluate_term(premise, mapping, interpretation) if t not in model.designated_values: premise_met = False break if not premise_met: continue t = evaluate_term(rule.conclusion, mapping, interpretation) if t not in model.designated_values: return False return True