2024-05-12 13:03:28 -04:00
|
|
|
"""
|
|
|
|
Check to see if the model has the variable
|
|
|
|
sharing property.
|
|
|
|
"""
|
|
|
|
from itertools import chain, combinations, product
|
2024-05-28 14:50:31 -04:00
|
|
|
from typing import Dict, List, Optional, Set, Tuple
|
2024-05-29 13:50:20 -04:00
|
|
|
from common import set_to_str
|
2024-05-12 13:03:28 -04:00
|
|
|
from model import (
|
2024-05-28 14:50:31 -04:00
|
|
|
Model, model_closure, ModelFunction, ModelValue
|
2024-05-12 13:03:28 -04:00
|
|
|
)
|
|
|
|
from logic import Implication, Operation
|
|
|
|
|
2024-05-28 14:50:31 -04:00
|
|
|
def preseed(
|
|
|
|
initial_set: Set[ModelValue],
|
|
|
|
cache:List[Tuple[Set[ModelValue], Set[ModelValue]]]):
|
2024-05-12 13:03:28 -04:00
|
|
|
"""
|
2024-05-28 14:50:31 -04:00
|
|
|
Given a cache of previous model_closure calls,
|
|
|
|
use this to compute an initial model closure
|
|
|
|
set based on the initial set.
|
2024-05-12 13:03:28 -04:00
|
|
|
|
2024-05-28 14:50:31 -04:00
|
|
|
Basic Idea:
|
|
|
|
Let {1, 2, 3} -> X be in the cache.
|
2024-05-12 13:03:28 -04:00
|
|
|
If {1,2,3} is a subset of initial set,
|
2024-05-28 14:50:31 -04:00
|
|
|
then X is the subset of the output of model_closure.
|
2024-05-12 13:03:28 -04:00
|
|
|
|
2024-05-28 14:50:31 -04:00
|
|
|
This is used to speed up subsequent calls to model_closure
|
2024-05-12 13:03:28 -04:00
|
|
|
"""
|
|
|
|
candidate_preseed: Tuple[Set[ModelValue], int] = (None, None)
|
|
|
|
|
|
|
|
for i, o in cache:
|
|
|
|
if i < initial_set:
|
|
|
|
cost = len(initial_set - i)
|
2024-05-28 14:50:31 -04:00
|
|
|
# If i is a subset with less missing elements than
|
|
|
|
# the previous candidate, then it's the new candidate.
|
2024-05-12 13:03:28 -04:00
|
|
|
if candidate_preseed[1] is None or cost < candidate_preseed[1]:
|
|
|
|
candidate_preseed = o, cost
|
|
|
|
|
|
|
|
same_set = candidate_preseed[1] == 0
|
|
|
|
return candidate_preseed[0], same_set
|
|
|
|
|
2024-05-28 14:50:31 -04:00
|
|
|
class VSP_Result:
|
|
|
|
def __init__(
|
2024-05-29 13:50:20 -04:00
|
|
|
self, has_vsp: bool, model_name: Optional[str] = None,
|
|
|
|
subalgebra1: Optional[Set[ModelValue]] = None,
|
|
|
|
subalgebra2: Optional[Set[ModelValue]] = None):
|
2024-05-28 14:50:31 -04:00
|
|
|
self.has_vsp = has_vsp
|
2024-05-29 13:50:20 -04:00
|
|
|
self.model_name = model_name
|
2024-05-28 14:50:31 -04:00
|
|
|
self.subalgebra1 = subalgebra1
|
|
|
|
self.subalgebra2 = subalgebra2
|
|
|
|
|
|
|
|
def __str__(self):
|
2024-05-29 13:50:20 -04:00
|
|
|
if not self.has_vsp:
|
|
|
|
return f"Model {self.model_name} does not have the variable sharing property."
|
|
|
|
return f"""Model {self.model_name} has the variable sharing property.
|
|
|
|
Subalgebra 1: {set_to_str(self.subalgebra1)}
|
|
|
|
Subalgebra 2: {set_to_str(self.subalgebra2)}
|
|
|
|
"""
|
2024-05-28 14:50:31 -04:00
|
|
|
|
|
|
|
def has_vsp(model: Model, interpretation: Dict[Operation, ModelFunction]) -> VSP_Result:
|
2024-05-12 13:03:28 -04:00
|
|
|
"""
|
2024-05-28 14:50:31 -04:00
|
|
|
Checks whether a model has the variable
|
|
|
|
sharing property.
|
2024-05-12 13:03:28 -04:00
|
|
|
"""
|
|
|
|
impfunction = interpretation[Implication]
|
|
|
|
|
2024-10-03 22:00:00 -04:00
|
|
|
# NOTE: No models with only one designated
|
|
|
|
# value satisfies VSP
|
|
|
|
if len(model.designated_values) == 1:
|
|
|
|
return VSP_Result(False, model.name)
|
|
|
|
|
2024-05-12 13:03:28 -04:00
|
|
|
# Compute I the set of tuples (x, y) where
|
|
|
|
# x -> y does not take a designiated value
|
|
|
|
I: Set[Tuple[ModelValue, ModelValue]] = set()
|
|
|
|
|
|
|
|
for (x, y) in product(model.carrier_set, model.carrier_set):
|
|
|
|
if impfunction(x, y) not in model.designated_values:
|
|
|
|
I.add((x, y))
|
|
|
|
|
|
|
|
# Construct the powerset of I without the empty set
|
|
|
|
s = list(I)
|
|
|
|
I_power = chain.from_iterable(combinations(s, r) for r in range(1, len(s) + 1))
|
|
|
|
# ((x1, y1)), ((x1, y1), (x2, y2)), ...
|
|
|
|
|
|
|
|
# Closure cache
|
|
|
|
closure_cache: List[Tuple[Set[ModelValue], Set[ModelValue]]] = []
|
|
|
|
|
|
|
|
# Find the subalgebras which falsify implication
|
|
|
|
for xys in I_power:
|
|
|
|
|
|
|
|
xs = {xy[0] for xy in xys}
|
|
|
|
orig_xs = xs
|
|
|
|
cached_xs = preseed(xs, closure_cache)
|
|
|
|
if cached_xs[0] is not None:
|
|
|
|
xs |= cached_xs[0]
|
|
|
|
|
|
|
|
ys = {xy[1] for xy in xys}
|
|
|
|
orig_ys = ys
|
|
|
|
cached_ys = preseed(ys, closure_cache)
|
|
|
|
if cached_ys[0] is not None:
|
|
|
|
ys |= cached_ys[0]
|
|
|
|
|
|
|
|
|
|
|
|
# NOTE: Optimziation before model_closure
|
|
|
|
# If the carrier set intersects, then move on to the next
|
|
|
|
# subalgebra
|
|
|
|
if len(xs & ys) > 0:
|
|
|
|
continue
|
|
|
|
|
|
|
|
# Compute the closure of all operations
|
|
|
|
# with just the xs
|
|
|
|
carrier_set_left: Set[ModelValue] = model_closure(xs, model.logical_operations)
|
|
|
|
|
|
|
|
# Save to cache
|
|
|
|
if cached_xs[0] is not None and not cached_ys[1]:
|
|
|
|
closure_cache.append((orig_xs, carrier_set_left))
|
|
|
|
|
|
|
|
|
|
|
|
# Compute the closure of all operations
|
|
|
|
# with just the ys
|
|
|
|
carrier_set_right: Set[ModelValue] = model_closure(ys, model.logical_operations)
|
|
|
|
|
|
|
|
# Save to cache
|
|
|
|
if cached_ys[0] is not None and not cached_ys[1]:
|
|
|
|
closure_cache.append((orig_ys, carrier_set_right))
|
|
|
|
|
|
|
|
|
|
|
|
# If the carrier set intersects, then move on to the next
|
|
|
|
# subalgebra
|
|
|
|
if len(carrier_set_left & carrier_set_right) > 0:
|
|
|
|
continue
|
|
|
|
|
|
|
|
# See if for all pairs in the subalgebras, that
|
|
|
|
# implication is falsified
|
|
|
|
falsified = True
|
|
|
|
for (x2, y2) in product(carrier_set_left, carrier_set_right):
|
|
|
|
if impfunction(x2, y2) in model.designated_values:
|
|
|
|
falsified = False
|
|
|
|
break
|
|
|
|
|
|
|
|
if falsified:
|
2024-05-29 13:50:20 -04:00
|
|
|
return VSP_Result(True, model.name, carrier_set_left, carrier_set_right)
|
2024-05-12 13:03:28 -04:00
|
|
|
|
2024-05-29 13:50:20 -04:00
|
|
|
return VSP_Result(False, model.name)
|