2024-04-08 23:59:21 -04:00
|
|
|
"""
|
|
|
|
Defining what it means to be a model
|
|
|
|
"""
|
2024-04-15 00:08:00 -04:00
|
|
|
from common import set_to_str
|
2024-04-08 23:59:21 -04:00
|
|
|
from logic import (
|
|
|
|
PropositionalVariable, get_propostional_variables, Logic, Term,
|
2024-05-03 13:06:52 -04:00
|
|
|
Operation, Conjunction, Disjunction, Implication
|
2024-04-21 12:15:24 -04:00
|
|
|
)
|
2024-05-03 13:06:52 -04:00
|
|
|
from typing import Set, Dict, Tuple, Optional
|
2024-04-15 00:08:00 -04:00
|
|
|
from functools import lru_cache
|
2024-05-12 13:03:28 -04:00
|
|
|
from itertools import combinations, chain, product, permutations
|
2024-05-03 13:06:52 -04:00
|
|
|
from copy import deepcopy
|
|
|
|
|
2024-04-08 23:59:21 -04:00
|
|
|
|
|
|
|
__all__ = ['ModelValue', 'ModelFunction', 'Model']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ModelValue:
|
|
|
|
def __init__(self, name):
|
|
|
|
self.name = name
|
|
|
|
self.hashed_value = hash(self.name)
|
|
|
|
def immutable(self, name, value):
|
|
|
|
raise Exception("Model values are immutable")
|
|
|
|
self.__setattr__ = immutable
|
|
|
|
def __str__(self):
|
|
|
|
return self.name
|
|
|
|
def __hash__(self):
|
|
|
|
return self.hashed_value
|
|
|
|
def __eq__(self, other):
|
|
|
|
return isinstance(other, ModelValue) and self.name == other.name
|
2024-04-21 12:15:24 -04:00
|
|
|
def __lt__(self, other):
|
|
|
|
assert isinstance(other, ModelValue)
|
|
|
|
return ModelOrderConstraint(self, other)
|
2024-05-12 13:03:28 -04:00
|
|
|
def __deepcopy__(self, memo):
|
|
|
|
return ModelValue(self.name)
|
2024-04-08 23:59:21 -04:00
|
|
|
|
|
|
|
|
|
|
|
class ModelFunction:
|
2024-05-03 13:06:52 -04:00
|
|
|
def __init__(self, arity: int, mapping, operation_name = ""):
|
2024-04-08 23:59:21 -04:00
|
|
|
self.operation_name = operation_name
|
2024-05-03 13:06:52 -04:00
|
|
|
self.arity = arity
|
2024-04-08 23:59:21 -04:00
|
|
|
|
|
|
|
# Correct input to always be a tuple
|
|
|
|
corrected_mapping = dict()
|
|
|
|
for k, v in mapping.items():
|
|
|
|
if isinstance(k, tuple):
|
2024-05-03 13:06:52 -04:00
|
|
|
assert len(k) == arity
|
2024-04-08 23:59:21 -04:00
|
|
|
corrected_mapping[k] = v
|
|
|
|
elif isinstance(k, list):
|
2024-05-03 13:06:52 -04:00
|
|
|
assert len(k) == arity
|
2024-04-08 23:59:21 -04:00
|
|
|
corrected_mapping[tuple(k)] = v
|
|
|
|
else: # Assume it's atomic
|
2024-05-03 13:06:52 -04:00
|
|
|
assert arity == 1
|
2024-04-08 23:59:21 -04:00
|
|
|
corrected_mapping[(k,)] = v
|
2024-04-21 12:15:24 -04:00
|
|
|
|
2024-04-08 23:59:21 -04:00
|
|
|
self.mapping = corrected_mapping
|
2024-04-21 12:15:24 -04:00
|
|
|
|
2024-04-08 23:59:21 -04:00
|
|
|
def __str__(self):
|
|
|
|
str_dict = dict()
|
|
|
|
for k, v in self.mapping.items():
|
|
|
|
inputstr = "(" + ", ".join(str(ki) for ki in k) + ")"
|
|
|
|
str_dict[inputstr] = str(v)
|
2024-05-09 17:08:15 -04:00
|
|
|
return self.operation_name + " " + str(str_dict)
|
2024-04-08 23:59:21 -04:00
|
|
|
|
|
|
|
def __call__(self, *args):
|
|
|
|
return self.mapping[args]
|
2024-04-21 12:15:24 -04:00
|
|
|
|
2024-04-08 23:59:21 -04:00
|
|
|
# def __eq__(self, other):
|
|
|
|
# return isinstance(other, ModelFunction) and self.name == other.name and self.arity == other.arity
|
|
|
|
|
2024-04-21 12:15:24 -04:00
|
|
|
class ModelOrderConstraint:
|
|
|
|
# a < b
|
|
|
|
def __init__(self, a: ModelValue, b: ModelValue):
|
|
|
|
self.a = a
|
|
|
|
self.b = b
|
|
|
|
def __hash__(self):
|
|
|
|
return hash(self.a) * hash(self.b)
|
|
|
|
def __eq__(self, other):
|
|
|
|
return isinstance(other, ModelOrderConstraint) and \
|
|
|
|
self.a == other.a and self.b == other.b
|
|
|
|
|
2024-04-08 23:59:21 -04:00
|
|
|
class Model:
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
carrier_set: Set[ModelValue],
|
|
|
|
logical_operations: Set[ModelFunction],
|
2024-04-21 12:15:24 -04:00
|
|
|
designated_values: Set[ModelValue],
|
|
|
|
ordering: Optional[Set[ModelOrderConstraint]] = None
|
2024-04-08 23:59:21 -04:00
|
|
|
):
|
|
|
|
assert designated_values <= carrier_set
|
|
|
|
self.carrier_set = carrier_set
|
|
|
|
self.logical_operations = logical_operations
|
|
|
|
self.designated_values = designated_values
|
2024-04-21 12:15:24 -04:00
|
|
|
self.ordering = ordering if ordering is not None else set()
|
|
|
|
# TODO: Make sure ordering is "valid"
|
|
|
|
# That is: transitive, etc.
|
|
|
|
|
2024-04-08 23:59:21 -04:00
|
|
|
def __str__(self):
|
|
|
|
result = f"""Carrier Set: {set_to_str(self.carrier_set)}
|
|
|
|
Designated Values: {set_to_str(self.designated_values)}
|
|
|
|
"""
|
|
|
|
for function in self.logical_operations:
|
|
|
|
result += f"{str(function)}\n"
|
2024-04-21 12:15:24 -04:00
|
|
|
|
2024-04-08 23:59:21 -04:00
|
|
|
return result
|
|
|
|
|
|
|
|
|
2024-04-15 00:08:00 -04:00
|
|
|
def evaluate_term(t: Term, f: Dict[PropositionalVariable, ModelValue], interpretation: Dict[Operation, ModelFunction]) -> ModelValue:
|
2024-04-08 23:59:21 -04:00
|
|
|
if isinstance(t, PropositionalVariable):
|
|
|
|
return f[t]
|
|
|
|
|
|
|
|
model_function = interpretation[t.operation]
|
|
|
|
model_arguments = []
|
|
|
|
for logic_arg in t.arguments:
|
|
|
|
model_arg = evaluate_term(logic_arg, f, interpretation)
|
|
|
|
model_arguments.append(model_arg)
|
2024-04-21 12:15:24 -04:00
|
|
|
|
2024-04-08 23:59:21 -04:00
|
|
|
return model_function(*model_arguments)
|
|
|
|
|
|
|
|
def all_model_valuations(
|
2024-04-15 00:08:00 -04:00
|
|
|
pvars: Tuple[PropositionalVariable],
|
|
|
|
mvalues: Tuple[ModelValue]):
|
2024-04-21 12:15:24 -04:00
|
|
|
|
2024-05-04 16:51:49 -04:00
|
|
|
all_possible_values = product(mvalues, repeat=len(pvars))
|
2024-04-08 23:59:21 -04:00
|
|
|
|
|
|
|
for valuation in all_possible_values:
|
2024-04-15 00:08:00 -04:00
|
|
|
mapping: Dict[PropositionalVariable, ModelValue] = dict()
|
2024-04-08 23:59:21 -04:00
|
|
|
assert len(pvars) == len(valuation)
|
|
|
|
for pvar, value in zip(pvars, valuation):
|
|
|
|
mapping[pvar] = value
|
|
|
|
yield mapping
|
|
|
|
|
2024-04-15 00:08:00 -04:00
|
|
|
@lru_cache
|
|
|
|
def all_model_valuations_cached(
|
|
|
|
pvars: Tuple[PropositionalVariable],
|
|
|
|
mvalues: Tuple[ModelValue]):
|
|
|
|
return list(all_model_valuations(pvars, mvalues))
|
|
|
|
|
2024-04-21 17:37:21 -04:00
|
|
|
def rule_ordering_satisfied(model: Model, interpretation: Dict[Operation, ModelFunction]) -> bool:
|
|
|
|
"""
|
|
|
|
Currently testing whether this function helps with runtime...
|
|
|
|
"""
|
|
|
|
if Conjunction in interpretation:
|
|
|
|
possible_inputs = ((a, b) for (a, b) in product(model.carrier_set, model.carrier_set))
|
|
|
|
for a, b in possible_inputs:
|
|
|
|
output = interpretation[Conjunction](a, b)
|
|
|
|
if a < b in model.ordering and output != a:
|
|
|
|
print("RETURNING FALSE")
|
|
|
|
return False
|
|
|
|
if b < a in model.ordering and output != b:
|
|
|
|
print("RETURNING FALSE")
|
|
|
|
return False
|
|
|
|
|
|
|
|
if Disjunction in interpretation:
|
|
|
|
possible_inputs = ((a, b) for (a, b) in product(model.carrier_set, model.carrier_set))
|
|
|
|
for a, b in possible_inputs:
|
|
|
|
output = interpretation[Disjunction](a, b)
|
|
|
|
if a < b in model.ordering and output != b:
|
|
|
|
print("RETURNING FALSE")
|
|
|
|
return False
|
|
|
|
if b < a in model.ordering and output != a:
|
|
|
|
print("RETURNING FALSE")
|
|
|
|
return False
|
|
|
|
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
2024-04-15 00:08:00 -04:00
|
|
|
def satisfiable(logic: Logic, model: Model, interpretation: Dict[Operation, ModelFunction]) -> bool:
|
|
|
|
pvars = tuple(get_propostional_variables(tuple(logic.rules)))
|
|
|
|
mappings = all_model_valuations_cached(pvars, tuple(model.carrier_set))
|
2024-04-08 23:59:21 -04:00
|
|
|
|
2024-04-21 17:37:21 -04:00
|
|
|
# NOTE: Does not look like rule ordering is helping for finding
|
|
|
|
# models of R...
|
|
|
|
if not rule_ordering_satisfied(model, interpretation):
|
|
|
|
return False
|
2024-04-21 12:15:24 -04:00
|
|
|
|
2024-04-08 23:59:21 -04:00
|
|
|
for mapping in mappings:
|
|
|
|
for rule in logic.rules:
|
|
|
|
premise_met = True
|
2024-04-21 12:15:24 -04:00
|
|
|
premise_ts = set()
|
2024-04-08 23:59:21 -04:00
|
|
|
for premise in rule.premises:
|
2024-04-21 12:15:24 -04:00
|
|
|
premise_t = evaluate_term(premise, mapping, interpretation)
|
|
|
|
if premise_t not in model.designated_values:
|
2024-04-08 23:59:21 -04:00
|
|
|
premise_met = False
|
|
|
|
break
|
2024-04-21 12:15:24 -04:00
|
|
|
premise_ts.add(premise_t)
|
|
|
|
|
2024-04-08 23:59:21 -04:00
|
|
|
if not premise_met:
|
|
|
|
continue
|
2024-04-21 12:15:24 -04:00
|
|
|
|
|
|
|
consequent_t = evaluate_term(rule.conclusion, mapping, interpretation)
|
|
|
|
|
|
|
|
if consequent_t not in model.designated_values:
|
2024-04-08 23:59:21 -04:00
|
|
|
return False
|
2024-04-21 12:15:24 -04:00
|
|
|
|
2024-04-08 23:59:21 -04:00
|
|
|
return True
|
2024-05-03 13:06:52 -04:00
|
|
|
|
2024-05-12 13:03:28 -04:00
|
|
|
from itertools import combinations_with_replacement
|
|
|
|
from collections import defaultdict
|
2024-05-03 13:06:52 -04:00
|
|
|
|
|
|
|
def model_closure(initial_set: Set[ModelValue], mfunctions: Set[ModelFunction]):
|
2024-05-12 13:03:28 -04:00
|
|
|
closure_set: Set[ModelValue] = initial_set
|
|
|
|
last_new = initial_set
|
|
|
|
changed = True
|
2024-05-03 13:06:52 -04:00
|
|
|
|
2024-05-12 13:03:28 -04:00
|
|
|
while changed:
|
|
|
|
changed = False
|
|
|
|
new_elements = set()
|
|
|
|
old_closure = closure_set - last_new
|
2024-05-03 13:06:52 -04:00
|
|
|
|
2024-05-12 13:03:28 -04:00
|
|
|
# arity -> args
|
|
|
|
cached_args = defaultdict(list)
|
2024-05-03 13:06:52 -04:00
|
|
|
|
2024-05-12 13:03:28 -04:00
|
|
|
for mfun in mfunctions:
|
2024-05-03 13:06:52 -04:00
|
|
|
|
2024-05-12 13:03:28 -04:00
|
|
|
# Use cached args if this arity was looked at before
|
|
|
|
if mfun.arity in cached_args:
|
|
|
|
for args in cached_args[mfun.arity]:
|
|
|
|
element = mfun(*args)
|
|
|
|
if element not in closure_set:
|
|
|
|
new_elements.add(element)
|
|
|
|
# Move onto next function
|
|
|
|
continue
|
2024-05-03 17:04:03 -04:00
|
|
|
|
2024-05-12 13:03:28 -04:00
|
|
|
# Iterate over how many new elements would be within the arguments
|
|
|
|
# NOTE: To not repeat work, there must be at least one new element
|
|
|
|
for num_new in range(1, mfun.arity + 1):
|
|
|
|
new_args = combinations_with_replacement(last_new, r=num_new)
|
|
|
|
old_args = combinations_with_replacement(old_closure, r=mfun.arity - num_new)
|
|
|
|
for new_arg, old_arg in product(new_args, old_args):
|
|
|
|
for args in permutations(new_arg + old_arg):
|
|
|
|
cached_args[mfun.arity].append(args)
|
|
|
|
element = mfun(*args)
|
|
|
|
if element not in closure_set:
|
|
|
|
new_elements.add(element)
|
|
|
|
|
|
|
|
closure_set.update(new_elements)
|
|
|
|
changed = len(new_elements) > 0
|
|
|
|
last_new = new_elements
|
|
|
|
|
|
|
|
return closure_set
|