bodypix-background/decode_image/index.js

84 lines
3.1 KiB
JavaScript

const {Tensor3D, tensor3d, util} = require('@tensorflow/tfjs-core');
const jpeg = require('jpeg-js');
/**
* Decode a JPEG-encoded image to a 3D Tensor of dtype `int32`.
*
* ```js
* const image = require('path/to/img.jpg');
* const imageAssetPath = Image.resolveAssetSource(image);
* const response = await fetch(imageAssetPath.uri, {}, { isBinary: true });
* const rawImageData = await response.arrayBuffer();
* const imageTensor = decodeJpeg(rawImageData);
* ```
*
* @param contents The JPEG-encoded image in an Uint8Array.
* @param channels An optional int. Defaults to 3. Accepted values are
* 0: use the number of channels in the JPG-encoded image.
* 1: output a grayscale image.
* 3: output an RGB image.
* @returns A 3D Tensor of dtype `int32` with shape [height, width, 1/3].
*/
/** @doc {heading: 'Media', subheading: 'Images'} */
function decodeJpeg(
contents, channels = 3) {
util.assert(
getImageType(contents) === 'jpeg',
() => 'The passed contents are not a valid JPEG image');
util.assert(
channels === 3, () => 'Only 3 channels is supported at this time');
const TO_UINT8ARRAY = true;
const {width, height, data} = jpeg.decode(contents, TO_UINT8ARRAY);
// Drop the alpha channel info because jpeg.decode always returns a typedArray
// with 255
const buffer = new Uint8Array(width * height * 3);
let offset = 0; // offset into original data
for (let i = 0; i < buffer.length; i += 3) {
buffer[i] = data[offset];
buffer[i + 1] = data[offset + 1];
buffer[i + 2] = data[offset + 2];
offset += 4;
}
return tensor3d(buffer, [height, width, channels]);
}
/**
* Helper function to get image type based on starting bytes of the image file.
*/
function getImageType(content) {
// Classify the contents of a file based on starting bytes (aka magic number:
// tslint:disable-next-line:max-line-length
// https://en.wikipedia.org/wiki/Magic_number_(programming)#Magic_numbers_in_files)
// This aligns with TensorFlow Core code:
// tslint:disable-next-line:max-line-length
// https://github.com/tensorflow/tensorflow/blob/4213d5c1bd921f8d5b7b2dc4bbf1eea78d0b5258/tensorflow/core/kernels/decode_image_op.cc#L44
if (content.length > 3 && content[0] === 255 && content[1] === 216 &&
content[2] === 255) {
// JPEG byte chunk starts with `ff d8 ff`
return 'jpeg';
} else if (
content.length > 4 && content[0] === 71 && content[1] === 73 &&
content[2] === 70 && content[3] === 56) {
// GIF byte chunk starts with `47 49 46 38`
return 'gif';
} else if (
content.length > 8 && content[0] === 137 && content[1] === 80 &&
content[2] === 78 && content[3] === 71 && content[4] === 13 &&
content[5] === 10 && content[6] === 26 && content[7] === 10) {
// PNG byte chunk starts with `\211 P N G \r \n \032 \n (89 50 4E 47 0D 0A
// 1A 0A)`
return 'png';
} else if (content.length > 3 && content[0] === 66 && content[1] === 77) {
// BMP byte chunk starts with `42 4d`
return 'bmp';
} else {
throw new Error(
'Expected image (JPEG, PNG, or GIF), but got unsupported image type');
}
}
module.exports = {
decodeJpeg
}