const {Tensor3D, tensor3d, util} = require('@tensorflow/tfjs-core'); const jpeg = require('jpeg-js'); /** * Decode a JPEG-encoded image to a 3D Tensor of dtype `int32`. * * ```js * const image = require('path/to/img.jpg'); * const imageAssetPath = Image.resolveAssetSource(image); * const response = await fetch(imageAssetPath.uri, {}, { isBinary: true }); * const rawImageData = await response.arrayBuffer(); * const imageTensor = decodeJpeg(rawImageData); * ``` * * @param contents The JPEG-encoded image in an Uint8Array. * @param channels An optional int. Defaults to 3. Accepted values are * 0: use the number of channels in the JPG-encoded image. * 1: output a grayscale image. * 3: output an RGB image. * @returns A 3D Tensor of dtype `int32` with shape [height, width, 1/3]. */ /** @doc {heading: 'Media', subheading: 'Images'} */ function decodeJpeg( contents, channels = 3) { util.assert( getImageType(contents) === 'jpeg', () => 'The passed contents are not a valid JPEG image'); util.assert( channels === 3, () => 'Only 3 channels is supported at this time'); const TO_UINT8ARRAY = true; const {width, height, data} = jpeg.decode(contents, TO_UINT8ARRAY); // Drop the alpha channel info because jpeg.decode always returns a typedArray // with 255 const buffer = new Uint8Array(width * height * 3); let offset = 0; // offset into original data for (let i = 0; i < buffer.length; i += 3) { buffer[i] = data[offset]; buffer[i + 1] = data[offset + 1]; buffer[i + 2] = data[offset + 2]; offset += 4; } return tensor3d(buffer, [height, width, channels]); } /** * Helper function to get image type based on starting bytes of the image file. */ function getImageType(content) { // Classify the contents of a file based on starting bytes (aka magic number: // tslint:disable-next-line:max-line-length // https://en.wikipedia.org/wiki/Magic_number_(programming)#Magic_numbers_in_files) // This aligns with TensorFlow Core code: // tslint:disable-next-line:max-line-length // https://github.com/tensorflow/tensorflow/blob/4213d5c1bd921f8d5b7b2dc4bbf1eea78d0b5258/tensorflow/core/kernels/decode_image_op.cc#L44 if (content.length > 3 && content[0] === 255 && content[1] === 216 && content[2] === 255) { // JPEG byte chunk starts with `ff d8 ff` return 'jpeg'; } else if ( content.length > 4 && content[0] === 71 && content[1] === 73 && content[2] === 70 && content[3] === 56) { // GIF byte chunk starts with `47 49 46 38` return 'gif'; } else if ( content.length > 8 && content[0] === 137 && content[1] === 80 && content[2] === 78 && content[3] === 71 && content[4] === 13 && content[5] === 10 && content[6] === 26 && content[7] === 10) { // PNG byte chunk starts with `\211 P N G \r \n \032 \n (89 50 4E 47 0D 0A // 1A 0A)` return 'png'; } else if (content.length > 3 && content[0] === 66 && content[1] === 77) { // BMP byte chunk starts with `42 4d` return 'bmp'; } else { throw new Error( 'Expected image (JPEG, PNG, or GIF), but got unsupported image type'); } } module.exports = { decodeJpeg }