Archived
1
0
Fork 0

Modularized programming language code. Code is no longer in several large files :)

This commit is contained in:
Brandon Rozek 2018-09-25 22:37:05 -04:00
parent b0ec7c113c
commit 8c7571bef4
19 changed files with 1093 additions and 986 deletions

View file

@ -1,8 +1,24 @@
run: src/lex.yy.c src/parser.tab.c
gcc src/lex.yy.c src/parser.tab.c -o sloth
src/parser.tab.c: src/parser.y
bison -d -o src/parser.tab.c src/parser.y
src/lex.yy.c: src/lexer.l
flex -o src/lex.yy.c src/lexer.l
sloth: src/main.c src/parser/lex.yy.o src/parser/parser.tab.o src/variables/environment.o src/variables/variable.o src/variables/value.o src/operations/node.o src/operations/operators.o
gcc src/main.c src/parser/lex.yy.o src/parser/parser.tab.o src/variables/environment.o src/variables/variable.o src/variables/value.o src/operations/node.o src/operations/operators.o -o sloth
src/parser/lex.yy.o: src/parser/lex.yy.c src/parser/parser.tab.h
gcc -c src/parser/lex.yy.c -o src/parser/lex.yy.o
src/parser/parser.tab.o: src/parser/parser.tab.c
gcc -c src/parser/parser.tab.c -o src/parser/parser.tab.o
src/parser/parser.tab.h: src/parser/parser.y
bison -d -o src/parser/parser.tab.c src/parser/parser.y
src/parser/parser.tab.c: src/parser/parser.y
bison -d -o src/parser/parser.tab.c src/parser/parser.y
src/parser/lex.yy.c: src/parser/lexer.l
flex -o src/parser/lex.yy.c src/parser/lexer.l
src/variables/environment.o: src/variables/environment.h src/variables/environment.c
gcc -c src/variables/environment.c -o src/variables/environment.o
src/variables/variable.o: src/variables/variable.h src/variables/variable.c
gcc -c src/variables/variable.c -o src/variables/variable.o
src/variables/value.o: src/variables/value.h src/variables/value.h
gcc -c src/variables/value.c -o src/variables/value.o
src/operations/operators.o: src/operations/operators.h src/operations/operators.c
gcc -c src/operations/operators.c -o src/operations/operators.o
src/operations/node.o: src/operations/node.h src/operations/node.c
gcc -c src/operations/node.c -o src/operations/node.o
clean:
rm src/lex.yy.c src/parser.tab.c src/parser.tab.h sloth
rm src/parser/lex.yy.c src/parser/parser.tab.c src/parser/parser.tab.h src/parser/lex.yy.o src/parser/parser.tab.o src/variables/environment.o src/variables/variable.o src/variables/value.o src/operations/node.o src/operations/operators.o sloth

11
src/constants.h Normal file
View file

@ -0,0 +1,11 @@
#ifndef CONSTANTS_H
#define CONSTANTS_H
#define STATEMENT 200
#define CALLFUNC 201
// Share the line number between files
extern int linenum;
extern struct Node* result;
#endif

31
src/main.c Normal file
View file

@ -0,0 +1,31 @@
#include <stdio.h>
#include <stdlib.h>
#include "sloth.h"
/* the result variable */
struct Node* result;
int main(int argc, char* argv[]) {
if (argc != 2) {
printf("Incorrect number of arguments passed. Expected %d, got %d.\n", 1, argc - 1);
printf("Usage: lexer [program_name].sl\n");
exit(-1);
}
/* save stdin */
FILE* orig_stdin = stdin;
stdin = fopen(argv[1], "r");
yyparse( );
/* restore stdin */
fclose(stdin);
stdin = orig_stdin;
// Interpret the AST
// print_tree(result, 0);
struct Environment* env = create_environment();
eval_statement(result, env);
delete_environment(env);
delete_tree(result);
return 0;
}

View file

@ -1,93 +0,0 @@
#ifndef NODE_H
#define NODE_H
#define ID_SIZE 100
#define MAX_CHILDREN 3
#define STATEMENT 200
#define CALLFUNC 201
#define MAX_VARIABLES 200
enum TypeTag { DOUBLE, LONG, BOOLEAN };
// Share the line number between files
extern int linenum;
/* a tree node definition */
struct Node {
int type;
struct Value* value;
/* the id of the node (used for identifiers only) */
char id[ID_SIZE];
/* at most three children nodes */
int num_children;
struct Node* children[MAX_CHILDREN];
};
// Abstract Syntax Tree Functions
struct Node* make_node(int type, struct Value* value, char* id);
void attach_node(struct Node* parent, struct Node* child);
void print_tree(struct Node* node, int tabs);
void delete_tree(struct Node* node);
struct Variable {
char id[ID_SIZE];
struct Value* value;
};
typedef union typeval {
long num;
double dec;
struct Node* expr;
} TypeVal;
struct Value {
enum TypeTag type;
TypeVal value;
};
// Value functions
struct Value* make_value(int type, long num, double dec, struct Node* expr);
struct Value* make_long(long num);
struct Value* make_double(double dec);
struct Value* make_true();
struct Value* make_false();
void delete_value(struct Value* val);
long get_long(struct Value* val);
double get_double(struct Value* val);
struct Node* get_expression(struct Value* val);
void set_long(struct Value* val, long num);
void set_double(struct Value* val, double dec);
void set_expression(struct Value* val, struct Node* node);
// Variable Functions
struct Variable* make_variable(char* id, struct Value* value);
void set_value(struct Variable* var, struct Value* value);
struct Value* get_value(struct Variable* var);
struct Value* make_long(long num);
struct Value* make_double(double dec);
struct Value* make_true();
struct Value* make_false();
struct Value* make_boolean(int x);
struct Value* make_expression(struct Node* expr);
struct Environment {
int num_vars;
struct Variable* vars[MAX_VARIABLES];
};
// Variable Lookup Functions
struct Environment* create_environment(void);
void delete_environment(struct Environment* env);
struct Variable* find_variable(struct Environment* env, char* id);
void add_variable(struct Environment* env, struct Variable* var);
// Interpreting AST
void eval_statement(struct Node* node, struct Environment* env);
struct Value* eval_expression(struct Node* node, struct Environment* env);
#endif

342
src/operations/node.c Normal file
View file

@ -0,0 +1,342 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "node.h"
#include "operators.h"
#include "../constants.h"
#include "../parser/parser.tab.h"
#include "../variables/value.h"
#include "../variables/variable.h"
/* creates a new node and returns it */
struct Node* make_node(int type, struct Value* value, char* id) {
int i;
/* allocate space */
struct Node* node = malloc(sizeof(struct Node));
/* set properties */
node->type = type;
node->value = value;
strcpy(node->id, id);
node->num_children = 0;
for(i = 0; i < MAX_CHILDREN; i++) {
node->children[i] = NULL;
}
/* return new node */
return node;
}
/* attach an existing node onto a parent */
void attach_node(struct Node* parent, struct Node* child) {
/* connect it */
parent->children[parent->num_children] = child;
parent->num_children++;
assert(parent->num_children <= MAX_CHILDREN);
}
void check_num_nodes(struct Node* node, int num_children, char* error) {
if (node && node->num_children != num_children) {
fprintf(stderr, "%s%s%s", "Error, ", error, "\n");
}
}
void print_tree(struct Node* node, int tabs) {
int i;
/* base case */
if(!node) {
fprintf(stderr, "NO TREE STRUCTURE\n");
return;
}
/* print leading tabs */
for(i = 0; i < tabs; i++) {
printf(" ");
}
switch(node->type) {
case IDENTIFIER: printf("IDENTIFIER: %s\n", node->id); break;
case PLUS: printf("PLUS:\n"); break;
case MINUS: printf("MINUS:\n"); break;
case DIVIDE: printf("DIVIDE:\n"); break;
case TIMES: printf("TIMES:\n"); break;
case LESS: printf("LESS THAN:\n"); break;
case GREATER: printf("GREATER:\n"); break;
case LESSEQ: printf("LESS EQUAL:\n"); break;
case GREATEREQ: printf("GREATER EQUAL:\n"); break;
case EQUALS: printf("EQUALS:\n"); break;
case NEQUALS: printf("NOT EQUALS:\n"); break;
case AND: printf("AND:\n"); break;
case OR: printf("OR:\n"); break;
case NOT: printf("NOT:\n"); break;
case ASSIGN: printf("ASSIGN:\n"); break;
case IF: printf("IF:\n"); break;
case WHILE: printf("WHILE:\n"); break;
case PRINT: printf("PRINT:\n"); break;
case INPUT: printf("INPUT:\n"); break;
case LAMBDA: printf("LAMBDA:\n"); break;
case CALLFUNC: printf("FUNCTIONCALL:\n"); break;
case STATEMENT: printf("STATEMENT:\n"); break;
case VALUE:
if (node->value->type == BOOLEAN) {
if (get_long(node->value)) {
printf("VALUE: true\n");
} else {
printf("VALUE: false\n");
}
} else if (node->value->type == LONG) {
printf("VALUE: %li\n", get_long(node->value));
} else { // Assume double
printf("VALUE: %lf\n", get_double(node->value));
}
break;
default:
printf("Error, %d not a valid node type.\n", node->type);
exit(1);
}
/* print all children nodes underneath */
for(i = 0; i < node->num_children; i++) {
print_tree(node->children[i], tabs + 1);
}
}
void delete_tree(struct Node* node) {
if (!node) { return; }
for(int i = 0; i < node->num_children; i++) {
delete_tree(node->children[i]);
}
free(node);
}
struct Value* eval_expression(struct Node* node, struct Environment* env) {
/* base case */
if(!node) {
fprintf(stderr, "Error: No tree structure to evaluate\n");
return 0;
}
// Needed if we are going to take input from the user
double temp;
struct Variable* var = NULL;
struct Environment* local_env = NULL;
struct Node* tempNode = NULL;
struct Value* tempVal = NULL;
// Evaluate subexpressions if existent and node is not a lambda expression
struct Value* val1 = NULL;
struct Value* val2 = NULL;
struct Value* val3 = NULL;
if (node->num_children > 0 && node->type != LAMBDA) {
val1 = eval_expression(node->children[0], env);
if (node->num_children > 1) {
val2 = eval_expression(node->children[1], env);
if (node->num_children > 2) {
val3 = eval_expression(node->children[2], env);
// delete_value(val3); // No code below uses val3 for now...
}
}
}
switch(node->type) {
case LAMBDA: return make_expression(node); break;
case CALLFUNC:
check_num_nodes(node, 2, "cannot have more than two nodes for a function call.");
tempNode = get_expression(get_value(find_variable(env, node->children[0]->id)));
local_env = create_environment();
add_variable(local_env,
make_variable(tempNode->children[0]->id, // Get the name of the variable needed for the lambda expression
eval_expression(node->children[1], env)));
tempVal = eval_expression(tempNode->children[1], local_env);
delete_environment(local_env);
return tempVal;
break;
case PLUS:
check_num_nodes(node, 2, "cannot add more than two expressions.");
return add(val1, val2);
// return val1 + val2;
break;
//----------
case MINUS:
check_num_nodes(node, 2, "cannot subtract more than two expressions.");
return subtract(val1, val2);
// return val1 - val2;
break;
//----------
case DIVIDE:
check_num_nodes(node, 2, "cannot divide more than two expressions.");
return division(val1, val2);
// return val1 / val2;
break;
//----------
case TIMES:
check_num_nodes(node, 2, "cannot multiply more than two expressions.");
return multiplication(val1, val2);
// return val1 * val2;
break;
//----------
case LESS:
check_num_nodes(node, 2, "cannot compare more than two expressions.");
if (node->num_children != 2) { fprintf(stderr, "Error, cannot compare more than two expressions.\n"); }
return less(val1, val2);
// return val1 < val2;
break;
//----------
case GREATER:
check_num_nodes(node, 2, "cannot compare more than two expressions.");
return greater(val1, val2);
// return val1 > val2;
break;
//----------
case LESSEQ:
check_num_nodes(node, 2, "cannot compare more than two expressions.");
return less_equal(val1, val2);
// return val1 <= val2;
break;
//----------
case GREATEREQ:
check_num_nodes(node, 2, "cannot compare more than two expressions.");
return greater_equal(val1, val2);
// return val1 >= val2;
break;
//----------
case EQUALS:
check_num_nodes(node, 2, "cannot compare more than two expressions.");
return equals(val1, val2);
// return val1 == val2;
break;
//----------
case NEQUALS:
check_num_nodes(node, 2, "cannot compare more than two expressions.");
return not_equals(val1, val2);
// return val1 != val2;
break;
//----------
case AND:
check_num_nodes(node, 2, "cannot perform logical operators on more than two expressions.");
return and(val1, val2);
// return val1 && val2;
break;
//----------
case OR:
check_num_nodes(node, 2, "cannot perform logical operators on more than two expressions.");
return or(val1, val2);
// return val1 || val2;
break;
//----------
case NOT:
check_num_nodes(node, 1, "cannot negate more than one expressions.");
return not(val1);
// return !val1;
break;
//----------
case INPUT: // We're only going to support reading in doubles
// Look into deleting possible values...?
scanf("%lf", &temp);
return make_double(temp);
break;
//----------
case IDENTIFIER:
var = find_variable(env, node->id);
if (var == NULL) {
fprintf(stderr, "Error: Symbol %s not found.\n", node->id);
return 0;
}
return get_value(var);
break;
//----------
case VALUE:
return node->value;
break;
//----------
default:
fprintf(stderr,"Error, %d not a valid expression type.\n", node->type);
return 0;
}
}
void eval_statement(struct Node* node, struct Environment* env) {
/* base case */
if(!node) {
fprintf(stderr, "Error: No tree structure to evaluate\n");
return;
}
struct Value* tempVal;
switch(node->type) {
case ASSIGN:
check_num_nodes(node, 2, "cannot make an assignment without an identifier and a value.");
add_variable(env,
make_variable(node->children[0]->id,
eval_expression(node->children[1], env)));
break;
//------------
case IF:
if (node->num_children != 2 && node->num_children != 3) {
fprintf(stderr, "Error: The format of an if-statement is if expression statement with an optional else.\n");
}
tempVal = eval_expression(node->children[0], env);
if (tempVal->type == BOOLEAN) {
if (get_long(tempVal)) {
eval_statement(node->children[1], env);
} else if (node->num_children == 3) {
eval_statement(node->children[2], env);
}
} else {
fprintf(stderr, "Error, a non-boolean was in the condition of an if statement.\n");
}
break;
//------------
case WHILE:
check_num_nodes(node, 2, "the format of a while statement is: while expression statement(s)");
tempVal = eval_expression(node->children[0], env);
if (tempVal->type == BOOLEAN) {
while (get_long(tempVal)) {
eval_statement(node->children[1], env);
tempVal = eval_expression(node->children[0], env);
}
} else {
fprintf(stderr, "Error, a non-boolean was in the condition of the while loop.\n");
}
break;
//------------
case PRINT:
check_num_nodes(node, 1, "can only print out one expression at a time.");
tempVal = eval_expression(node->children[0], env);
if (tempVal->type == BOOLEAN) {
if (get_long(tempVal)) {
printf("true\n");
} else {
printf("false\n");
}
} else if (tempVal->type == LONG) {
printf("%li\n", get_long(tempVal));
} else if (tempVal ->type == DOUBLE) {
printf("%lf\n", get_double(tempVal));
} else { // Assume lambda expression
printf("<LambdaExpression>\n");
}
break;
//------------
case STATEMENT: // Can have a maximum of two children statement nodes
if (node->num_children > 0) {
eval_statement(node->children[0], env);
}
if (node->num_children > 1) {
eval_statement(node->children[1], env);
}
break;
//------------
default:
printf("Error, %d not a valid statement type.\n", node->type);
return;
}
}

33
src/operations/node.h Normal file
View file

@ -0,0 +1,33 @@
#ifndef NODE_H
#define NODE_H
#include "../variables/value.h"
#include "../variables/environment.h"
#define ID_SIZE 100
#define MAX_CHILDREN 3
/* a tree node definition */
struct Node {
int type;
struct Value* value;
/* the id of the node (used for identifiers only) */
char id[ID_SIZE];
/* at most three children nodes */
int num_children;
struct Node* children[MAX_CHILDREN];
};
// Abstract Syntax Tree Functions
struct Node* make_node(int type, struct Value* value, char* id);
void attach_node(struct Node* parent, struct Node* child);
void print_tree(struct Node* node, int tabs);
void delete_tree(struct Node* node);
// Interpreting AST
void eval_statement(struct Node* node, struct Environment* env);
struct Value* eval_expression(struct Node* node, struct Environment* env);
#endif

231
src/operations/operators.c Normal file
View file

@ -0,0 +1,231 @@
#include <stdio.h>
#include <stdlib.h>
#include "operators.h"
#include "../variables/value.h"
struct Value* add(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in add.\n"); }
if (x->type == BOOLEAN || y->type == BOOLEAN) { fprintf(stderr, "Error, cannot add a boolean.\n"); }
struct Value* ans;
// Destruct all four cases
if (x->type == LONG && y->type == LONG) {
ans = make_long(get_long(x) + get_long(y));
} else if (x->type == LONG && y->type == DOUBLE) {
ans = make_double(get_long(x) + get_double(y));
} else if (x->type == DOUBLE && y->type == LONG) {
ans = make_double(get_double(x) + get_long(y));
} else { // Both are DOUBLE
ans = make_double(get_double(x) + get_double(y));
}
return ans;
}
struct Value* subtract(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in subtract.\n"); }
if (x->type == BOOLEAN || y->type == BOOLEAN) { fprintf(stderr, "Error, cannot subtract a boolean.\n"); }
struct Value* ans;
// Destruct all four cases
if (x->type == LONG && y->type == LONG) {
ans = make_long(get_long(x) - get_long(y));
} else if (x->type == LONG && y->type == DOUBLE) {
ans = make_double(get_long(x) - get_double(y));
} else if (x->type == DOUBLE && y->type == LONG) {
ans = make_double(get_double(x) - get_long(y));
} else { // Both are DOUBLE
ans = make_double(get_double(x) - get_double(y));
}
return ans;
}
struct Value* division(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in divide.\n"); }
if (x->type == BOOLEAN || y->type == BOOLEAN) { fprintf(stderr, "Error, cannot divide a boolean.\n"); }
struct Value* ans;
// Destruct all four cases
if (x->type == LONG && y->type == LONG) {
ans = make_long(get_long(x) / get_long(y));
} else if (x->type == LONG && y->type == DOUBLE) {
ans = make_double(get_long(x) / get_double(y));
} else if (x->type == DOUBLE && y->type == LONG) {
ans = make_double(get_double(x) / get_long(y));
} else { // Both are DOUBLE
ans = make_double(get_double(x) / get_double(y));
}
return ans;
}
struct Value* multiplication(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in multiply.\n"); }
if (x->type == BOOLEAN || y->type == BOOLEAN) { fprintf(stderr, "Error, cannot multiply a boolean.\n"); }
struct Value* ans;
// Destruct all four cases
if (x->type == LONG && y->type == LONG) {
ans = make_long(get_long(x) * get_long(y));
} else if (x->type == LONG && y->type == DOUBLE) {
ans = make_double(get_long(x) * get_double(y));
} else if (x->type == DOUBLE && y->type == LONG) {
ans = make_double(get_double(x) * get_long(y));
} else { // Both are DOUBLE
ans = make_double(get_double(x) * get_double(y));
}
return ans;
}
struct Value* less(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in <.\n"); }
if (x->type == BOOLEAN || y->type == BOOLEAN) { fprintf(stderr, "Error, cannot numerically compare a boolean.\n"); }
struct Value* ans;
// Destruct all four cases
if (x->type == LONG && y->type == LONG) {
ans = make_boolean(get_long(x) < get_long(y));
} else if (x->type == LONG && y->type == DOUBLE) {
ans = make_boolean(get_long(x) < get_double(y));
} else if (x->type == DOUBLE && y->type == LONG) {
ans = make_boolean(get_double(x) < get_long(y));
} else { // Both are DOUBLE
ans = make_boolean(get_double(x) < get_double(y));
}
return ans;
}
struct Value* greater(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in greater.\n"); }
if (x->type == BOOLEAN || y->type == BOOLEAN) { fprintf(stderr, "Error, cannot numerically compare a boolean.\n"); }
struct Value* ans;
// Destruct all four cases
if (x->type == LONG && y->type == LONG) {
ans = make_boolean(get_long(x) > get_long(y));
} else if (x->type == LONG && y->type == DOUBLE) {
ans = make_boolean(get_long(x) > get_double(y));
} else if (x->type == DOUBLE && y->type == LONG) {
ans = make_boolean(get_double(x) > get_long(y));
} else { // Both are DOUBLE
ans = make_boolean(get_double(x) > get_double(y));
}
return ans;
}
struct Value* less_equal(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in <=.\n"); }
if (x->type == BOOLEAN || y->type == BOOLEAN) { fprintf(stderr, "Error, cannot numerically compare a boolean.\n"); }
struct Value* ans;
// Destruct all four cases
if (x->type == LONG && y->type == LONG) {
ans = make_boolean(get_long(x) <= get_long(y));
} else if (x->type == LONG && y->type == DOUBLE) {
ans = make_boolean(get_long(x) <= get_double(y));
} else if (x->type == DOUBLE && y->type == LONG) {
ans = make_boolean(get_double(x) <= get_long(y));
} else { // Both are DOUBLE
ans = make_boolean(get_double(x) <= get_double(y));
}
return ans;
}
struct Value* greater_equal(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in >=.\n"); }
if (x->type == BOOLEAN || y->type == BOOLEAN) { fprintf(stderr, "Error, cannot numerically compare a boolean.\n"); }
struct Value* ans;
// Destruct all four cases
if (x->type == LONG && y->type == LONG) {
ans = make_boolean(get_long(x) >= get_long(y));
} else if (x->type == LONG && y->type == DOUBLE) {
ans = make_boolean(get_long(x) >= get_double(y));
} else if (x->type == DOUBLE && y->type == LONG) {
ans = make_boolean(get_double(x) >= get_long(y));
} else { // Both are DOUBLE
ans = make_boolean(get_double(x) >= get_double(y));
}
return ans;
}
struct Value* equals(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in ==.\n"); }
struct Value* ans;
// Destruct all four cases
if (x->type == LONG && y->type == LONG) {
ans = make_boolean(get_long(x) == get_long(y));
} else if (x->type == LONG && y->type == DOUBLE) {
ans = make_boolean(get_long(x) == get_double(y));
} else if (x->type == DOUBLE && y->type == LONG) {
ans = make_boolean(get_double(x) == get_long(y));
} else if (x->type == DOUBLE && y->type == DOUBLE) {
ans = make_boolean(get_double(x) == get_double(y));
} else if (x->type == BOOLEAN && y->type == BOOLEAN) {
ans = make_boolean(get_long(x) == get_long(y));
} else { // Type is a mix between boolean and another type
fprintf(stderr, "Error, cannot compare a boolean with another type.\n");
}
return ans;
}
struct Value* not_equals(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in !=.\n"); }
struct Value* ans;
// Destruct all four cases
if (x->type == LONG && y->type == LONG) {
ans = make_boolean(get_long(x) != get_long(y));
} else if (x->type == LONG && y->type == DOUBLE) {
ans = make_boolean(get_long(x) != get_double(y));
} else if (x->type == DOUBLE && y->type == LONG) {
ans = make_boolean(get_double(x) != get_long(y));
} else if (x->type == DOUBLE && y->type == DOUBLE) {
ans = make_boolean(get_double(x) != get_double(y));
} else if (x->type == BOOLEAN && y->type == BOOLEAN) {
ans = make_boolean(get_long(x) != get_long(y));
} else { // Type is a mix between boolean and another type
fprintf(stderr, "Error, cannot compare a boolean with another type.\n");
}
return ans;
}
struct Value* and(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in &&.\n"); }
if (x->type != BOOLEAN || y->type != BOOLEAN) { fprintf(stderr, "Error, cannot use and AND operation with a non-boolean.\n"); }
return make_boolean(get_long(x) && get_long(y));
}
struct Value* or(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in ||.\n"); }
if (x->type != BOOLEAN || y->type != BOOLEAN) { fprintf(stderr, "Error, cannot use and OR operation with a non-boolean.\n"); }
return make_boolean(get_long(x) || get_long(y));
}
struct Value* not(struct Value* x) {
if (!x) { fprintf(stderr, "Error, uninitialized values being used in !.\n"); }
if (x->type != BOOLEAN) { fprintf(stderr, "Error, cannot NOT a non-boolean.\n"); }
return make_boolean(!get_long(x));
}

View file

@ -0,0 +1,18 @@
#ifndef OPERATORS_H
#define OPERATORS_H
struct Value* add(struct Value* x, struct Value* y);
struct Value* subtract(struct Value* x, struct Value* y);
struct Value* division(struct Value* x, struct Value* y);
struct Value* multiplication(struct Value* x, struct Value* y);
struct Value* less(struct Value* x, struct Value* y);
struct Value* greater(struct Value* x, struct Value* y);
struct Value* less_equal(struct Value* x, struct Value* y);
struct Value* greater_equal(struct Value* x, struct Value* y);
struct Value* equals(struct Value* x, struct Value* y);
struct Value* not_equals(struct Value* x, struct Value* y);
struct Value* and(struct Value* x, struct Value* y);
struct Value* or(struct Value* x, struct Value* y);
struct Value* not(struct Value* x);
#endif

View file

@ -1,885 +0,0 @@
%{
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <stdlib.h>
#include "node.h"
int yywrap( );
int yylex( );
void yyerror(const char* str);
/* the result variable */
struct Node* result;
%}
/* declare type possibilities of symbols */
%union {
struct Node* value;
}
/* declare tokens (default is typeless) */
%token <value> IDENTIFIER
%token <value> VALUE
%token PLUS
%token MINUS
%token DIVIDE
%token TIMES
%token LESS
%token GREATER
%token LESSEQ
%token GREATEREQ
%token EQUALS
%token NEQUALS
%token AND
%token OR
%token NOT
%token SEMICOLON
%token ASSIGN
%token OPENPAREM
%token ENDPAREM
%token BEGINTOK
%token END
%token IF
%token THEN
%token ELSE
%token WHILE
%token DO
%token PRINT
%token <value> INPUT
%token COMMENT
%token WHITESPACE
%token DONE
%token <value> LAMBDA
%token COLON
/* declare non-terminals */
%type <value> program statement assignment if-statement if-else-statement while print statements substatements callfunc exprlambda expression subexpression term subterm factor atom identvalue ident
/* give us more detailed errors */
%error-verbose
%%
program: substatements {result = $1; return 0;}
| "" {return 0;}
statement: assignment { $$ = $1; }
| if-statement { $$ = $1; }
| if-else-statement { $$ = $1; }
| while { $$ = $1; }
| print { $$ = $1; }
| statements { $$ = $1; }
assignment: ident ASSIGN exprlambda SEMICOLON {
$$ = make_node(ASSIGN, NULL, "");
attach_node($$, $1);
attach_node($$, $3);
}
if-statement: IF expression THEN statement {
$$ = make_node(IF, NULL, "");
attach_node($$, $2);
attach_node($$, $4);
}
if-else-statement: IF expression THEN statement ELSE statement {
$$ = make_node(IF, NULL, "");
attach_node($$, $2);
attach_node($$, $4);
attach_node($$, $6);
}
while: WHILE expression DO statement {
$$ = make_node(WHILE, NULL, "");
attach_node($$, $2);
attach_node($$, $4);
}
print: PRINT exprlambda SEMICOLON {
$$ = make_node(PRINT, NULL, "");
attach_node($$, $2);
}
statements: BEGINTOK substatements END { $$ = $2; }
| BEGINTOK END {}
substatements: statement substatements {$$ = make_node(STATEMENT, NULL, ""); attach_node($$, $1); attach_node($$, $2); }
| statement {$$ = make_node(STATEMENT, NULL, ""); attach_node($$, $1); }
exprlambda: LAMBDA ident COLON expression {
// Only supports one argument functions for now
$$ = make_node(LAMBDA, NULL, "");
attach_node($$, $2);
attach_node($$, $4); }
| expression { $$ = $1; }
expression: expression OR subexpression { $$ = make_node(OR, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| expression AND subexpression { $$ = make_node(AND, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| subexpression { $$ = $1; }
subexpression: subexpression LESS term { $$ = make_node(LESS, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| subexpression LESSEQ term { $$ = make_node(LESSEQ, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| subexpression GREATER term { $$ = make_node(GREATER, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| subexpression GREATEREQ term { $$ = make_node(GREATEREQ, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| subexpression EQUALS term { $$ = make_node(EQUALS, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| subexpression NEQUALS term { $$ = make_node(NEQUALS, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| term { $$ = $1; }
term : term PLUS subterm { $$ = make_node(PLUS, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| term MINUS subterm { $$ = make_node(MINUS, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| subterm { $$ = $1; }
subterm: subterm TIMES factor { $$ = make_node(TIMES, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| subterm DIVIDE factor { $$ = make_node(DIVIDE, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| factor { $$ = $1; }
factor : MINUS factor { $$ = make_node(MINUS, NULL, ""); attach_node($$, $2); }
| NOT factor { $$ = make_node(NOT, NULL, ""); attach_node($$, $2); }
| atom { $$ = $1; }
callfunc: ident OPENPAREM expression ENDPAREM { $$ = make_node(CALLFUNC, NULL, ""); attach_node($$, $1); attach_node($$, $3); }
atom: OPENPAREM expression ENDPAREM { $$ = $2; }
| callfunc { $$ = $1; }
| identvalue { $$ = $1; }
ident: IDENTIFIER { $$ = $1; }
identvalue: ident { $$ = $1; }
| VALUE { $$ = $1; }
| INPUT { $$ = make_node(INPUT, NULL , ""); }
%%
int yywrap( ) {
return 1;
}
void yyerror(const char* str) {
fprintf(stderr, "Compiler error on line %d: '%s'.\n", linenum, str);
exit(1);
}
int main(int argc, char* argv[]) {
if (argc != 2) {
printf("Incorrect number of arguments passed. Expected %d, got %d.\n", 1, argc - 1);
printf("Usage: lexer [program_name].sl\n");
exit(-1);
}
/* save stdin */
FILE* orig_stdin = stdin;
stdin = fopen(argv[1], "r");
yyparse( );
/* restore stdin */
fclose(stdin);
stdin = orig_stdin;
// Interpret the AST
// print_tree(result, 0);
struct Environment* env = create_environment();
eval_statement(result, env);
delete_environment(env);
delete_tree(result);
return 0;
}
/* creates a new node and returns it */
struct Node* make_node(int type, struct Value* value, char* id) {
int i;
/* allocate space */
struct Node* node = malloc(sizeof(struct Node));
/* set properties */
node->type = type;
node->value = value;
strcpy(node->id, id);
node->num_children = 0;
for(i = 0; i < MAX_CHILDREN; i++) {
node->children[i] = NULL;
}
/* return new node */
return node;
}
/* attach an existing node onto a parent */
void attach_node(struct Node* parent, struct Node* child) {
/* connect it */
parent->children[parent->num_children] = child;
parent->num_children++;
assert(parent->num_children <= MAX_CHILDREN);
}
void print_tree(struct Node* node, int tabs) {
int i;
/* base case */
if(!node) {
fprintf(stderr, "NO TREE STRUCTURE\n");
return;
}
/* print leading tabs */
for(i = 0; i < tabs; i++) {
printf(" ");
}
switch(node->type) {
case IDENTIFIER: printf("IDENTIFIER: %s\n", node->id); break;
case PLUS: printf("PLUS:\n"); break;
case MINUS: printf("MINUS:\n"); break;
case DIVIDE: printf("DIVIDE:\n"); break;
case TIMES: printf("TIMES:\n"); break;
case LESS: printf("LESS THAN:\n"); break;
case GREATER: printf("GREATER:\n"); break;
case LESSEQ: printf("LESS EQUAL:\n"); break;
case GREATEREQ: printf("GREATER EQUAL:\n"); break;
case EQUALS: printf("EQUALS:\n"); break;
case NEQUALS: printf("NOT EQUALS:\n"); break;
case AND: printf("AND:\n"); break;
case OR: printf("OR:\n"); break;
case NOT: printf("NOT:\n"); break;
case ASSIGN: printf("ASSIGN:\n"); break;
case IF: printf("IF:\n"); break;
case WHILE: printf("WHILE:\n"); break;
case PRINT: printf("PRINT:\n"); break;
case INPUT: printf("INPUT:\n"); break;
case LAMBDA: printf("LAMBDA:\n"); break;
case CALLFUNC: printf("FUNCTIONCALL:\n"); break;
case STATEMENT: printf("STATEMENT:\n"); break;
case VALUE:
if (node->value->type == BOOLEAN) {
if (get_long(node->value)) {
printf("VALUE: true\n");
} else {
printf("VALUE: false\n");
}
} else if (node->value->type == LONG) {
printf("VALUE: %li\n", get_long(node->value));
} else { // Assume double
printf("VALUE: %lf\n", get_double(node->value));
}
break;
default:
printf("Error, %d not a valid node type.\n", node->type);
exit(1);
}
/* print all children nodes underneath */
for(i = 0; i < node->num_children; i++) {
print_tree(node->children[i], tabs + 1);
}
}
void delete_tree(struct Node* node) {
if (!node) { return; }
for(int i = 0; i < node->num_children; i++) {
delete_tree(node->children[i]);
}
free(node);
}
/* creates a new variable and returns it */
struct Variable* make_variable(char* id, struct Value* value) {
/* allocate space */
struct Variable* var = malloc(sizeof(struct Variable));
/* set properties */
strcpy(var->id, id);
var->value = value;
/* return new variable */
return var;
}
void set_value(struct Variable* var, struct Value* value) {
if (!var) { fprintf(stderr, "Error: Invalid Variable\n"); return; }
var->value = value;
}
struct Value* get_value(struct Variable* var) {
if (!var) { fprintf(stderr, "Error: Invalid Variable\n"); return 0; }
return var->value;
}
struct Environment* create_environment(void) {
struct Environment* env = malloc(sizeof(struct Environment));
env->num_vars = 0;
for(int i = 0; i < MAX_VARIABLES; i++) {
env->vars[i] = NULL;
}
return env;
}
struct Variable* find_variable(struct Environment* env, char* id) {
for (int i = 0; i < env->num_vars; i++) {
if (strcmp(env->vars[i]->id, id) == 0) {
return env->vars[i];
}
}
return NULL;
}
void add_variable(struct Environment* env, struct Variable* var) {
if (env->num_vars >= MAX_VARIABLES) {
fprintf(stderr, "Error: Maximum number of variables reached.\n");
return;
}
// If variable exists, replace it
struct Variable* temp_var = find_variable(env, var->id);
if (temp_var != NULL) {
temp_var->value = var->value;
free(var);
return;
}
// If not, add variable to environment
env->vars[env->num_vars] = var;
env->num_vars += 1;
}
void delete_environment(struct Environment* env) {
for (int i = 0; i < env->num_vars; i++) {
free(env->vars[i]);
}
free(env);
}
void check_num_nodes(struct Node* node, int num_children, char* error) {
if (node && node->num_children != num_children) {
fprintf(stderr, "%s%s%s", "Error, ", error, "\n");
}
}
struct Value* make_value(int type, long num, double dec, struct Node* expr) {
/* allocate space */
struct Value* val = malloc(sizeof(struct Value));
/* set properties */
val->type = type;
if (type == LONG || type == BOOLEAN) {
val->value.num = num;
} else if (type == DOUBLE){ // Assume DOUBLE
val->value.dec = dec;
} else { // Assume lambda expression
val->value.expr = expr;
}
/* return new variable */
return val;
}
struct Value* make_long(long num) {
return make_value(LONG, num, 0, NULL);
}
struct Value* make_double(double dec) {
return make_value(DOUBLE, 0, dec, NULL);
}
struct Value* make_true() {
return make_value(BOOLEAN, 1, 0, NULL);
}
struct Value* make_false() {
return make_value(BOOLEAN, 0, 0, NULL);
}
struct Value* make_boolean(int x) {
return (x)? make_true() : make_false();
}
struct Value* make_expression(struct Node* expr) {
return make_value(LAMBDA, 0, 0, expr);
}
void delete_value(struct Value* val) {
free(val);
}
long get_long(struct Value* val) {
return val->value.num;
}
double get_double(struct Value* val) {
return val->value.dec;
}
struct Node* get_expression(struct Value* val) {
return val->value.expr;
}
void set_long(struct Value* val, long num) {
val->type = LONG;
val->value.num = num;
}
void set_double(struct Value* val, double dec) {
val->type = DOUBLE;
val->value.dec = dec;
}
void set_expression(struct Value* val, struct Node* expr) {
val->type = LAMBDA;
val->value.expr = expr;
}
struct Value* add(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in add.\n"); }
if (x->type == BOOLEAN || y->type == BOOLEAN) { fprintf(stderr, "Error, cannot add a boolean.\n"); }
struct Value* ans;
// Destruct all four cases
if (x->type == LONG && y->type == LONG) {
ans = make_long(get_long(x) + get_long(y));
} else if (x->type == LONG && y->type == DOUBLE) {
ans = make_double(get_long(x) + get_double(y));
} else if (x->type == DOUBLE && y->type == LONG) {
ans = make_double(get_double(x) + get_long(y));
} else { // Both are DOUBLE
ans = make_double(get_double(x) + get_double(y));
}
return ans;
}
struct Value* subtract(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in subtract.\n"); }
if (x->type == BOOLEAN || y->type == BOOLEAN) { fprintf(stderr, "Error, cannot subtract a boolean.\n"); }
struct Value* ans;
// Destruct all four cases
if (x->type == LONG && y->type == LONG) {
ans = make_long(get_long(x) - get_long(y));
} else if (x->type == LONG && y->type == DOUBLE) {
ans = make_double(get_long(x) - get_double(y));
} else if (x->type == DOUBLE && y->type == LONG) {
ans = make_double(get_double(x) - get_long(y));
} else { // Both are DOUBLE
ans = make_double(get_double(x) - get_double(y));
}
return ans;
}
struct Value* division(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in divide.\n"); }
if (x->type == BOOLEAN || y->type == BOOLEAN) { fprintf(stderr, "Error, cannot divide a boolean.\n"); }
struct Value* ans;
// Destruct all four cases
if (x->type == LONG && y->type == LONG) {
ans = make_long(get_long(x) / get_long(y));
} else if (x->type == LONG && y->type == DOUBLE) {
ans = make_double(get_long(x) / get_double(y));
} else if (x->type == DOUBLE && y->type == LONG) {
ans = make_double(get_double(x) / get_long(y));
} else { // Both are DOUBLE
ans = make_double(get_double(x) / get_double(y));
}
return ans;
}
struct Value* multiplication(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in multiply.\n"); }
if (x->type == BOOLEAN || y->type == BOOLEAN) { fprintf(stderr, "Error, cannot multiply a boolean.\n"); }
struct Value* ans;
// Destruct all four cases
if (x->type == LONG && y->type == LONG) {
ans = make_long(get_long(x) * get_long(y));
} else if (x->type == LONG && y->type == DOUBLE) {
ans = make_double(get_long(x) * get_double(y));
} else if (x->type == DOUBLE && y->type == LONG) {
ans = make_double(get_double(x) * get_long(y));
} else { // Both are DOUBLE
ans = make_double(get_double(x) * get_double(y));
}
return ans;
}
struct Value* less(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in <.\n"); }
if (x->type == BOOLEAN || y->type == BOOLEAN) { fprintf(stderr, "Error, cannot numerically compare a boolean.\n"); }
struct Value* ans;
// Destruct all four cases
if (x->type == LONG && y->type == LONG) {
ans = make_boolean(get_long(x) < get_long(y));
} else if (x->type == LONG && y->type == DOUBLE) {
ans = make_boolean(get_long(x) < get_double(y));
} else if (x->type == DOUBLE && y->type == LONG) {
ans = make_boolean(get_double(x) < get_long(y));
} else { // Both are DOUBLE
ans = make_boolean(get_double(x) < get_double(y));
}
return ans;
}
struct Value* greater(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in greater.\n"); }
if (x->type == BOOLEAN || y->type == BOOLEAN) { fprintf(stderr, "Error, cannot numerically compare a boolean.\n"); }
struct Value* ans;
// Destruct all four cases
if (x->type == LONG && y->type == LONG) {
ans = make_boolean(get_long(x) > get_long(y));
} else if (x->type == LONG && y->type == DOUBLE) {
ans = make_boolean(get_long(x) > get_double(y));
} else if (x->type == DOUBLE && y->type == LONG) {
ans = make_boolean(get_double(x) > get_long(y));
} else { // Both are DOUBLE
ans = make_boolean(get_double(x) > get_double(y));
}
return ans;
}
struct Value* less_equal(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in <=.\n"); }
if (x->type == BOOLEAN || y->type == BOOLEAN) { fprintf(stderr, "Error, cannot numerically compare a boolean.\n"); }
struct Value* ans;
// Destruct all four cases
if (x->type == LONG && y->type == LONG) {
ans = make_boolean(get_long(x) <= get_long(y));
} else if (x->type == LONG && y->type == DOUBLE) {
ans = make_boolean(get_long(x) <= get_double(y));
} else if (x->type == DOUBLE && y->type == LONG) {
ans = make_boolean(get_double(x) <= get_long(y));
} else { // Both are DOUBLE
ans = make_boolean(get_double(x) <= get_double(y));
}
return ans;
}
struct Value* greater_equal(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in >=.\n"); }
if (x->type == BOOLEAN || y->type == BOOLEAN) { fprintf(stderr, "Error, cannot numerically compare a boolean.\n"); }
struct Value* ans;
// Destruct all four cases
if (x->type == LONG && y->type == LONG) {
ans = make_boolean(get_long(x) >= get_long(y));
} else if (x->type == LONG && y->type == DOUBLE) {
ans = make_boolean(get_long(x) >= get_double(y));
} else if (x->type == DOUBLE && y->type == LONG) {
ans = make_boolean(get_double(x) >= get_long(y));
} else { // Both are DOUBLE
ans = make_boolean(get_double(x) >= get_double(y));
}
return ans;
}
struct Value* equals(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in ==.\n"); }
struct Value* ans;
// Destruct all four cases
if (x->type == LONG && y->type == LONG) {
ans = make_boolean(get_long(x) == get_long(y));
} else if (x->type == LONG && y->type == DOUBLE) {
ans = make_boolean(get_long(x) == get_double(y));
} else if (x->type == DOUBLE && y->type == LONG) {
ans = make_boolean(get_double(x) == get_long(y));
} else if (x->type == DOUBLE && y->type == DOUBLE) {
ans = make_boolean(get_double(x) == get_double(y));
} else if (x->type == BOOLEAN && y->type == BOOLEAN) {
ans = make_boolean(get_long(x) == get_long(y));
} else { // Type is a mix between boolean and another type
fprintf(stderr, "Error, cannot compare a boolean with another type.\n");
}
return ans;
}
struct Value* not_equals(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in !=.\n"); }
struct Value* ans;
// Destruct all four cases
if (x->type == LONG && y->type == LONG) {
ans = make_boolean(get_long(x) != get_long(y));
} else if (x->type == LONG && y->type == DOUBLE) {
ans = make_boolean(get_long(x) != get_double(y));
} else if (x->type == DOUBLE && y->type == LONG) {
ans = make_boolean(get_double(x) != get_long(y));
} else if (x->type == DOUBLE && y->type == DOUBLE) {
ans = make_boolean(get_double(x) != get_double(y));
} else if (x->type == BOOLEAN && y->type == BOOLEAN) {
ans = make_boolean(get_long(x) != get_long(y));
} else { // Type is a mix between boolean and another type
fprintf(stderr, "Error, cannot compare a boolean with another type.\n");
}
return ans;
}
struct Value* and(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in &&.\n"); }
if (x->type != BOOLEAN || y->type != BOOLEAN) { fprintf(stderr, "Error, cannot use and AND operation with a non-boolean.\n"); }
return make_boolean(get_long(x) && get_long(y));
}
struct Value* or(struct Value* x, struct Value* y) {
if (!x || !y) { fprintf(stderr, "Error, uninitialized values being used in ||.\n"); }
if (x->type != BOOLEAN || y->type != BOOLEAN) { fprintf(stderr, "Error, cannot use and OR operation with a non-boolean.\n"); }
return make_boolean(get_long(x) || get_long(y));
}
struct Value* not(struct Value* x) {
if (!x) { fprintf(stderr, "Error, uninitialized values being used in !.\n"); }
if (x->type != BOOLEAN) { fprintf(stderr, "Error, cannot NOT a non-boolean.\n"); }
return make_boolean(!get_long(x));
}
struct Value* eval_expression(struct Node* node, struct Environment* env) {
/* base case */
if(!node) {
fprintf(stderr, "Error: No tree structure to evaluate\n");
return 0;
}
// Needed if we are going to take input from the user
double temp;
struct Variable* var = NULL;
struct Environment* local_env = NULL;
struct Node* tempNode = NULL;
struct Value* tempVal = NULL;
// Evaluate subexpressions if existent and node is not a lambda expression
struct Value* val1 = NULL;
struct Value* val2 = NULL;
struct Value* val3 = NULL;
if (node->num_children > 0 && node->type != LAMBDA) {
val1 = eval_expression(node->children[0], env);
if (node->num_children > 1) {
val2 = eval_expression(node->children[1], env);
if (node->num_children > 2) {
val3 = eval_expression(node->children[2], env);
// delete_value(val3); // No code below uses val3 for now...
}
}
}
switch(node->type) {
case LAMBDA: return make_expression(node); break;
case CALLFUNC:
check_num_nodes(node, 2, "cannot have more than two nodes for a function call.");
tempNode = get_expression(get_value(find_variable(env, node->children[0]->id)));
local_env = create_environment();
add_variable(local_env,
make_variable(tempNode->children[0]->id, // Get the name of the variable needed for the lambda expression
eval_expression(node->children[1], env)));
tempVal = eval_expression(tempNode->children[1], local_env);
delete_environment(local_env);
return tempVal;
break;
case PLUS:
check_num_nodes(node, 2, "cannot add more than two expressions.");
return add(val1, val2);
// return val1 + val2;
break;
//----------
case MINUS:
check_num_nodes(node, 2, "cannot subtract more than two expressions.");
return subtract(val1, val2);
// return val1 - val2;
break;
//----------
case DIVIDE:
check_num_nodes(node, 2, "cannot divide more than two expressions.");
return division(val1, val2);
// return val1 / val2;
break;
//----------
case TIMES:
check_num_nodes(node, 2, "cannot multiply more than two expressions.");
return multiplication(val1, val2);
// return val1 * val2;
break;
//----------
case LESS:
check_num_nodes(node, 2, "cannot compare more than two expressions.");
if (node->num_children != 2) { fprintf(stderr, "Error, cannot compare more than two expressions.\n"); }
return less(val1, val2);
// return val1 < val2;
break;
//----------
case GREATER:
check_num_nodes(node, 2, "cannot compare more than two expressions.");
return greater(val1, val2);
// return val1 > val2;
break;
//----------
case LESSEQ:
check_num_nodes(node, 2, "cannot compare more than two expressions.");
return less_equal(val1, val2);
// return val1 <= val2;
break;
//----------
case GREATEREQ:
check_num_nodes(node, 2, "cannot compare more than two expressions.");
return greater_equal(val1, val2);
// return val1 >= val2;
break;
//----------
case EQUALS:
check_num_nodes(node, 2, "cannot compare more than two expressions.");
return equals(val1, val2);
// return val1 == val2;
break;
//----------
case NEQUALS:
check_num_nodes(node, 2, "cannot compare more than two expressions.");
return not_equals(val1, val2);
// return val1 != val2;
break;
//----------
case AND:
check_num_nodes(node, 2, "cannot perform logical operators on more than two expressions.");
return and(val1, val2);
// return val1 && val2;
break;
//----------
case OR:
check_num_nodes(node, 2, "cannot perform logical operators on more than two expressions.");
return or(val1, val2);
// return val1 || val2;
break;
//----------
case NOT:
check_num_nodes(node, 1, "cannot negate more than one expressions.");
return not(val1);
// return !val1;
break;
//----------
case INPUT: // We're only going to support reading in doubles
// Look into deleting possible values...?
scanf("%lf", &temp);
return make_double(temp);
break;
//----------
case IDENTIFIER:
var = find_variable(env, node->id);
if (var == NULL) {
fprintf(stderr, "Error: Symbol %s not found.\n", node->id);
return 0;
}
return get_value(var);
break;
//----------
case VALUE:
return node->value;
break;
//----------
default:
fprintf(stderr,"Error, %d not a valid expression type.\n", node->type);
return 0;
}
}
void eval_statement(struct Node* node, struct Environment* env) {
/* base case */
if(!node) {
fprintf(stderr, "Error: No tree structure to evaluate\n");
return;
}
struct Value* tempVal;
switch(node->type) {
case ASSIGN:
check_num_nodes(node, 2, "cannot make an assignment without an identifier and a value.");
add_variable(env,
make_variable(node->children[0]->id,
eval_expression(node->children[1], env)));
break;
//------------
case IF:
if (node->num_children != 2 && node->num_children != 3) {
fprintf(stderr, "Error: The format of an if-statement is if expression statement with an optional else.\n");
}
tempVal = eval_expression(node->children[0], env);
if (tempVal->type == BOOLEAN) {
if (get_long(tempVal)) {
eval_statement(node->children[1], env);
} else if (node->num_children == 3) {
eval_statement(node->children[2], env);
}
} else {
fprintf(stderr, "Error, a non-boolean was in the condition of an if statement.\n");
}
break;
//------------
case WHILE:
check_num_nodes(node, 2, "the format of a while statement is: while expression statement(s)");
tempVal = eval_expression(node->children[0], env);
if (tempVal->type == BOOLEAN) {
while (get_long(tempVal)) {
eval_statement(node->children[1], env);
tempVal = eval_expression(node->children[0], env);
}
} else {
fprintf(stderr, "Error, a non-boolean was in the condition of the while loop.\n");
}
break;
//------------
case PRINT:
check_num_nodes(node, 1, "can only print out one expression at a time.");
tempVal = eval_expression(node->children[0], env);
if (tempVal->type == BOOLEAN) {
if (get_long(tempVal)) {
printf("true\n");
} else {
printf("false\n");
}
} else if (tempVal->type == LONG) {
printf("%li\n", get_long(tempVal));
} else if (tempVal ->type == DOUBLE) {
printf("%lf\n", get_double(tempVal));
} else { // Assume lambda expression
printf("<LambdaExpression>\n");
}
break;
//------------
case STATEMENT: // Can have a maximum of two children statement nodes
if (node->num_children > 0) {
eval_statement(node->children[0], env);
}
if (node->num_children > 1) {
eval_statement(node->children[1], env);
}
break;
//------------
default:
printf("Error, %d not a valid statement type.\n", node->type);
return;
}
}

View file

@ -1,7 +1,8 @@
%{
#include <stdio.h>
#include <string.h>
#include "node.h"
#include "../operations/node.h"
#include "../variables/value.h"
#include "parser.tab.h"
/* Keep track of line numbers for error reporting */

8
src/parser/parser.h Normal file
View file

@ -0,0 +1,8 @@
#ifndef PARSER_H
#define PARSER_H
int yywrap( );
int yylex( );
void yyerror(const char* str);
#endif

160
src/parser/parser.y Normal file
View file

@ -0,0 +1,160 @@
%{
#include <stdio.h>
#include <stdlib.h>
#include "parser.h"
#include "../operations/node.h"
#include "../constants.h"
%}
/* declare type possibilities of symbols */
%union {
struct Node* value;
}
/* declare tokens (default is typeless) */
%token <value> IDENTIFIER
%token <value> VALUE
%token PLUS
%token MINUS
%token DIVIDE
%token TIMES
%token LESS
%token GREATER
%token LESSEQ
%token GREATEREQ
%token EQUALS
%token NEQUALS
%token AND
%token OR
%token NOT
%token SEMICOLON
%token ASSIGN
%token OPENPAREM
%token ENDPAREM
%token BEGINTOK
%token END
%token IF
%token THEN
%token ELSE
%token WHILE
%token DO
%token PRINT
%token <value> INPUT
%token COMMENT
%token WHITESPACE
%token DONE
%token <value> LAMBDA
%token COLON
/* declare non-terminals */
%type <value> program statement assignment if-statement if-else-statement while print statements substatements callfunc exprlambda expression subexpression term subterm factor atom identvalue ident
/* give us more detailed errors */
%error-verbose
%%
program: substatements {result = $1; return 0;}
| "" {return 0;}
statement: assignment { $$ = $1; }
| if-statement { $$ = $1; }
| if-else-statement { $$ = $1; }
| while { $$ = $1; }
| print { $$ = $1; }
| statements { $$ = $1; }
assignment: ident ASSIGN exprlambda SEMICOLON {
$$ = make_node(ASSIGN, NULL, "");
attach_node($$, $1);
attach_node($$, $3);
}
if-statement: IF expression THEN statement {
$$ = make_node(IF, NULL, "");
attach_node($$, $2);
attach_node($$, $4);
}
if-else-statement: IF expression THEN statement ELSE statement {
$$ = make_node(IF, NULL, "");
attach_node($$, $2);
attach_node($$, $4);
attach_node($$, $6);
}
while: WHILE expression DO statement {
$$ = make_node(WHILE, NULL, "");
attach_node($$, $2);
attach_node($$, $4);
}
print: PRINT exprlambda SEMICOLON {
$$ = make_node(PRINT, NULL, "");
attach_node($$, $2);
}
statements: BEGINTOK substatements END { $$ = $2; }
| BEGINTOK END {}
substatements: statement substatements {$$ = make_node(STATEMENT, NULL, ""); attach_node($$, $1); attach_node($$, $2); }
| statement {$$ = make_node(STATEMENT, NULL, ""); attach_node($$, $1); }
exprlambda: LAMBDA ident COLON expression {
// Only supports one argument functions for now
$$ = make_node(LAMBDA, NULL, "");
attach_node($$, $2);
attach_node($$, $4); }
| expression { $$ = $1; }
expression: expression OR subexpression { $$ = make_node(OR, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| expression AND subexpression { $$ = make_node(AND, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| subexpression { $$ = $1; }
subexpression: subexpression LESS term { $$ = make_node(LESS, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| subexpression LESSEQ term { $$ = make_node(LESSEQ, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| subexpression GREATER term { $$ = make_node(GREATER, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| subexpression GREATEREQ term { $$ = make_node(GREATEREQ, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| subexpression EQUALS term { $$ = make_node(EQUALS, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| subexpression NEQUALS term { $$ = make_node(NEQUALS, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| term { $$ = $1; }
term : term PLUS subterm { $$ = make_node(PLUS, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| term MINUS subterm { $$ = make_node(MINUS, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| subterm { $$ = $1; }
subterm: subterm TIMES factor { $$ = make_node(TIMES, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| subterm DIVIDE factor { $$ = make_node(DIVIDE, NULL, ""); attach_node($$, $1); attach_node($$, $3);}
| factor { $$ = $1; }
factor : MINUS factor { $$ = make_node(MINUS, NULL, ""); attach_node($$, $2); }
| NOT factor { $$ = make_node(NOT, NULL, ""); attach_node($$, $2); }
| atom { $$ = $1; }
callfunc: ident OPENPAREM expression ENDPAREM { $$ = make_node(CALLFUNC, NULL, ""); attach_node($$, $1); attach_node($$, $3); }
atom: OPENPAREM expression ENDPAREM { $$ = $2; }
| callfunc { $$ = $1; }
| identvalue { $$ = $1; }
ident: IDENTIFIER { $$ = $1; }
identvalue: ident { $$ = $1; }
| VALUE { $$ = $1; }
| INPUT { $$ = make_node(INPUT, NULL , ""); }
%%
int yywrap( ) {
return 1;
}
void yyerror(const char* str) {
fprintf(stderr, "Compiler error on line %d: '%s'.\n", linenum, str);
exit(1);
}

12
src/sloth.h Normal file
View file

@ -0,0 +1,12 @@
#ifndef SLOTH_H
#define SLOTH_H
#include "constants.h"
#include "operations/node.h"
#include "variables/value.h"
#include "variables/variable.h"
#include "variables/environment.h"
#include "parser/parser.h"
#include "parser/parser.tab.h"
#endif

View file

@ -0,0 +1,49 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "environment.h"
#include "variable.h"
struct Environment* create_environment(void) {
struct Environment* env = malloc(sizeof(struct Environment));
env->num_vars = 0;
for(int i = 0; i < MAX_VARIABLES; i++) {
env->vars[i] = NULL;
}
return env;
}
struct Variable* find_variable(struct Environment* env, char* id) {
for (int i = 0; i < env->num_vars; i++) {
if (strcmp(env->vars[i]->id, id) == 0) {
return env->vars[i];
}
}
return NULL;
}
void add_variable(struct Environment* env, struct Variable* var) {
if (env->num_vars >= MAX_VARIABLES) {
fprintf(stderr, "Error: Maximum number of variables reached.\n");
return;
}
// If variable exists, replace it
struct Variable* temp_var = find_variable(env, var->id);
if (temp_var != NULL) {
temp_var->value = var->value;
free(var);
return;
}
// If not, add variable to environment
env->vars[env->num_vars] = var;
env->num_vars += 1;
}
void delete_environment(struct Environment* env) {
for (int i = 0; i < env->num_vars; i++) {
free(env->vars[i]);
}
free(env);
}

View file

@ -0,0 +1,17 @@
#ifndef ENVIRONMENT_H
#define ENVIRONMENT_H
#define MAX_VARIABLES 200
struct Environment {
int num_vars;
struct Variable* vars[MAX_VARIABLES];
};
// Variable Lookup Functions
struct Environment* create_environment(void);
void delete_environment(struct Environment* env);
struct Variable* find_variable(struct Environment* env, char* id);
void add_variable(struct Environment* env, struct Variable* var);
#endif

68
src/variables/value.c Normal file
View file

@ -0,0 +1,68 @@
#include <stdlib.h>
#include "value.h"
#include "../parser/parser.tab.h"
struct Value* make_value(int type, long num, double dec, struct Node* expr) {
/* allocate space */
struct Value* val = malloc(sizeof(struct Value));
/* set properties */
val->type = type;
if (type == LONG || type == BOOLEAN) {
val->value.num = num;
} else if (type == DOUBLE){ // Assume DOUBLE
val->value.dec = dec;
} else { // Assume lambda expression
val->value.expr = expr;
}
/* return new variable */
return val;
}
struct Value* make_long(long num) {
return make_value(LONG, num, 0, NULL);
}
struct Value* make_double(double dec) {
return make_value(DOUBLE, 0, dec, NULL);
}
struct Value* make_true() {
return make_value(BOOLEAN, 1, 0, NULL);
}
struct Value* make_false() {
return make_value(BOOLEAN, 0, 0, NULL);
}
struct Value* make_boolean(int x) {
return (x)? make_true() : make_false();
}
struct Value* make_expression(struct Node* expr) {
return make_value(LAMBDA, 0, 0, expr);
}
void delete_value(struct Value* val) {
free(val);
}
long get_long(struct Value* val) {
return val->value.num;
}
double get_double(struct Value* val) {
return val->value.dec;
}
struct Node* get_expression(struct Value* val) {
return val->value.expr;
}
void set_long(struct Value* val, long num) {
val->type = LONG;
val->value.num = num;
}
void set_double(struct Value* val, double dec) {
val->type = DOUBLE;
val->value.dec = dec;
}
void set_expression(struct Value* val, struct Node* expr) {
val->type = LAMBDA;
val->value.expr = expr;
}

39
src/variables/value.h Normal file
View file

@ -0,0 +1,39 @@
#ifndef VALUE_H
#define VALUE_H
enum TypeTag { DOUBLE, LONG, BOOLEAN };
typedef union typeval {
long num;
double dec;
struct Node* expr;
} TypeVal;
struct Value {
enum TypeTag type;
TypeVal value;
};
// Constructors
struct Value* make_value(int type, long num, double dec, struct Node* expr);
struct Value* make_long(long num);
struct Value* make_double(double dec);
struct Value* make_true();
struct Value* make_false();
struct Value* make_boolean(int x);
struct Value* make_expression(struct Node* expr);
// Destructor
void delete_value(struct Value* val);
// Getters
long get_long(struct Value* val);
double get_double(struct Value* val);
struct Node* get_expression(struct Value* val);
// Setters
void set_long(struct Value* val, long num);
void set_double(struct Value* val, double dec);
void set_expression(struct Value* val, struct Node* node);
#endif

27
src/variables/variable.c Normal file
View file

@ -0,0 +1,27 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "variable.h"
/* creates a new variable and returns it */
struct Variable* make_variable(char* id, struct Value* value) {
/* allocate space */
struct Variable* var = malloc(sizeof(struct Variable));
/* set properties */
strcpy(var->id, id);
var->value = value;
/* return new variable */
return var;
}
void set_value(struct Variable* var, struct Value* value) {
if (!var) { fprintf(stderr, "Error: Invalid Variable\n"); return; }
var->value = value;
}
struct Value* get_value(struct Variable* var) {
if (!var) { fprintf(stderr, "Error: Invalid Variable\n"); return 0; }
return var->value;
}

22
src/variables/variable.h Normal file
View file

@ -0,0 +1,22 @@
#ifndef VARIABLE_H
#define VARIABLE_H
#include "../operations/node.h"
struct Variable {
char id[ID_SIZE];
struct Value* value;
};
// Variable Functions
struct Variable* make_variable(char* id, struct Value* value);
void set_value(struct Variable* var, struct Value* value);
struct Value* get_value(struct Variable* var);
struct Value* make_long(long num);
struct Value* make_double(double dec);
struct Value* make_true();
struct Value* make_false();
struct Value* make_boolean(int x);
struct Value* make_expression(struct Node* expr);
#endif