2020-01-28 02:16:55 +00:00
|
|
|
#!/usr/bin/env python
|
2019-09-03 11:16:26 +00:00
|
|
|
import play
|
|
|
|
import gym
|
|
|
|
from collections import namedtuple
|
|
|
|
from datetime import datetime
|
|
|
|
import pickle
|
|
|
|
import threading
|
|
|
|
from time import sleep
|
|
|
|
import argparse
|
|
|
|
import sys
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
Transition = namedtuple('Transition',
|
|
|
|
('state', 'action', 'reward', 'next_state', 'done'))
|
|
|
|
|
|
|
|
class PlayClass(threading.Thread):
|
|
|
|
def __init__(self, env, fps = 60):
|
|
|
|
super(PlayClass, self).__init__()
|
|
|
|
self.env = env
|
|
|
|
self.fps = fps
|
|
|
|
|
|
|
|
def run(self):
|
|
|
|
play.play(self.env, fps = self.fps, zoom = 4)
|
|
|
|
|
|
|
|
class Record(gym.Wrapper):
|
|
|
|
def __init__(self, env, memory, args, skipframes = 3):
|
|
|
|
gym.Wrapper.__init__(self, env)
|
|
|
|
self.memory_lock = threading.Lock()
|
|
|
|
self.memory = memory
|
|
|
|
self.args = args
|
|
|
|
self.skipframes = skipframes
|
|
|
|
self.current_i = skipframes
|
|
|
|
|
|
|
|
def reset(self):
|
|
|
|
return self.env.reset()
|
|
|
|
|
|
|
|
def step(self, action):
|
|
|
|
self.memory_lock.acquire()
|
|
|
|
state = self.env.env._get_obs()
|
|
|
|
next_state, reward, done, info = self.env.step(action)
|
|
|
|
if self.current_i <= 0:
|
|
|
|
self.memory.append(Transition(state, action, reward, next_state, done))
|
|
|
|
self.current_i = self.skipframes
|
|
|
|
else: self.current_i -= 1
|
|
|
|
self.memory_lock.release()
|
|
|
|
return next_state, reward, done, info
|
|
|
|
|
|
|
|
def log_transitions(self):
|
|
|
|
self.memory_lock.acquire()
|
|
|
|
if len(self.memory) > 0:
|
|
|
|
basename = self.args['logdir'] + "/{}.{}".format(self.args['environment_name'], datetime.now().strftime("%Y-%m-%d-%H-%M-%s"))
|
|
|
|
print("Base Filename: ", basename)
|
|
|
|
state, action, reward, next_state, done = zip(*self.memory)
|
|
|
|
np.save(basename + "-state.npy", np.array(state), allow_pickle = False)
|
|
|
|
np.save(basename + "-action.npy", np.array(action), allow_pickle = False)
|
|
|
|
np.save(basename + "-reward.npy", np.array(reward), allow_pickle = False)
|
|
|
|
np.save(basename + "-nextstate.npy", np.array(next_state), allow_pickle = False)
|
|
|
|
np.save(basename + "-done.npy", np.array(done), allow_pickle = False)
|
|
|
|
self.memory.clear()
|
|
|
|
self.memory_lock.release()
|
|
|
|
|
|
|
|
|
|
|
|
## Parsing arguments
|
|
|
|
parser = argparse.ArgumentParser(description="Play and log the environment")
|
|
|
|
parser.add_argument("--environment_name", type=str, help="The environment name in OpenAI gym to play.")
|
|
|
|
parser.add_argument("--logdir", type=str, help="Directory to log video and (state, action, reward, next_state, done) in.")
|
|
|
|
parser.add_argument("--skip", type=int, help="Number of frames to skip logging.")
|
|
|
|
parser.add_argument("--fps", type=int, help="Number of frames per second")
|
|
|
|
args = vars(parser.parse_args())
|
|
|
|
|
|
|
|
if args['environment_name'] is None or args['logdir'] is None:
|
|
|
|
parser.print_help()
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
if args['skip'] is None:
|
|
|
|
args['skip'] = 3
|
|
|
|
|
|
|
|
if args['fps'] is None:
|
|
|
|
args['fps'] = 30
|
|
|
|
|
|
|
|
## Starting the game
|
|
|
|
memory = []
|
|
|
|
env = Record(gym.make(args['environment_name']), memory, args, skipframes = args['skip'])
|
|
|
|
env = gym.wrappers.Monitor(env, args['logdir'], force=True)
|
|
|
|
playThread = PlayClass(env, args['fps'])
|
|
|
|
playThread.start()
|
|
|
|
|
|
|
|
## Logging portion
|
|
|
|
while playThread.is_alive():
|
|
|
|
playThread.join(60)
|
|
|
|
print("Logging....", end = " ")
|
|
|
|
env.log_transitions()
|
|
|
|
|
|
|
|
# Save what's remaining after process died
|
2020-01-28 02:16:55 +00:00
|
|
|
env.log_transitions()
|